PROBLEM:

Suppose that you have two sinusoids: $\quad x_{1}(t)=4 \cos (77 t-\pi) \quad$ and $\quad x_{2}(t)=4 \cos (77 t+3 \pi / 2)$
(a) Determine the complex amplitudes for both sinusoids, and plot these as vectors in a two-dimensional plane. Let Z_{1} denote the complex ampltiude of $x_{1}(t)$ and Z_{2} be the complex ampltiude of $x_{2}(t)$.
(b) Find a complex-valued signal $z_{3}(t)$ such that the sum signal, $x_{3}(t)=x_{1}(t)+x_{2}(t)$, is $x_{3}(t)=$ $\Re e\left\{z_{3}(t)\right\}$.
(c) Calculate the product: $Z_{p}=Z_{1} Z_{2}$, and plot the result as a vector. Use Z_{1} and Z_{2} from part (a).
(d) Explain why the product signal $x_{p}(t)=x_{1}(t) \cdot x_{2}(t)$ cannot be obtained by multiplying the complex amplitudes. (You may not have to find the product signal.)

