PROBLEM:

A periodic signal $x(t) = x(t + T_0)$ is described over one period $-T_0/2 \le t \le T_0/2$ by the equation $x(t) = \begin{cases} 10 & |t| < t_c \\ -2 & t_c < |t| \le T_0/2 \end{cases}$

where
$$t_c < T_0/2$$
. In this problem assume that $T_0 = 5$ and $t_c = 1$.
(a) Sketch the periodic function $x(t)$ for t in the range $-T_0 < t < 2T_0$.

(b) Determine the D.C. coefficient X_0 using the parameters $T_0 = 5$ and $t_c = 1$.

c) Determine the *fundamental frequency*
$$\omega_0$$
 in the Fourier Series representation (rad/sec).

(c) Determine the fundamental frequency ω_0 in the Fourier Series representation (rad/sec).

(d) Use the Fourier
$$analysis$$
 integral (for $k \neq 0$)

$$X_k = \frac{2}{T_0} \int_{-T_0/2}^{T_0/2} x(t) e^{-jk\omega_0 t} dt$$
 to determine a general formula for the Fourier coefficients X_k in the representation

to determine a general formula for the Fourier coefficients X_k in the representation

$$x(t) = X_0 + \Re \left\{ \sum_{k=1}^{\infty} X_k e^{jk\omega_0 t} \right\}$$

Your final result could depend on t_c and T_0 , but use $t_c = 1$ and $T_0 = 5$.

Note: The integral can be done over any period of the signal; in this case, the most convenient choice is from $-T_0/2$ to $T_0/2$.

(e) Sketch the spectrum of x(t) for the case $t_c = 1$ and $T_0 = 5$. Include the DC component and also the first 2 non-zero frequency components in both positive and negative frequency. Label each component with its complex amplitude (magnitude and phase). Check your work by verifying that the conjugate

property, $\frac{1}{2}X_{-k} = \frac{1}{2}X_k^*$, holds. Note: When converting from $\Re\{X\}$ to the spectrum, remember that $\Re\{X\} = \frac{1}{2}X + \frac{1}{2}X^*$.