PROBLEM:

Suppose that three systems are hooked together in "cascade." In other words, the output of S_1 is the input to S_2 , and the output of S_2 is the input to S_3 . The three systems are specified as follows:

$$S_1: y_1[n] = 3x_1[n] - 3x_1[n-1]$$

$$S_2: y_2[n] = 2x_2[n] + 2x_2[n-2]$$

$$S_3: \mathcal{H}_3(\hat{\omega}) = e^{-j\hat{\omega}} + e^{-j2\hat{\omega}}$$

NOTE: the output of S_i is $y_i[n]$ and the input is $x_i[n]$.

The objective in this problem is to determine the equivalent system that is a single operation from the input x[n] (into S_1) to the output y[n] which is the output of S_3 . Thus x[n] is $x_1[n]$ and y[n] is $y_3[n]$.

- (a) Determine the frequency response $\mathcal{H}_i(\hat{\omega})$ for i = 1, 2.
- (b) Determine the difference equation for S_3 .
- (c) Determine the *z*-transform system function $H_i(z)$ for each system.
- (d) Write one difference equation that defines the overall system in terms of x[n] and y[n] only.