PROBLEM:

Consider the following system diagram x[n]

$$\frac{x[n]}{\mathcal{H}(\hat{\omega})}$$
 FIR Filter
$$\mathcal{H}(\hat{\omega})$$
 where $\mathcal{H}(\hat{\omega}) = e^{-j\hat{\omega}} + e^{-j3\hat{\omega}} + e^{-j5\hat{\omega}}$.

(a) Write the frequency response
$$\mathcal{H}(\hat{\omega})$$
 in polar form.

Plot the magnitude vs. frequency of
$$\mathcal{H}(\hat{\omega})$$
.

(b) Plot the magnitude vs. frequency of
$$\mathcal{H}(\hat{\omega})$$
. Label important features.
$$|\mathcal{H}(\hat{\omega})|$$

y[n]

 $\frac{1}{2}\pi$

$$\pi$$
 $\hat{\omega}$ (in rad)

Label Carefully Plot zero values also

Use $\hat{\omega}$ for digital freq.

$$-\pi \qquad -\frac{1}{2}\pi \qquad 0 \qquad \frac{1}{2}\pi$$
(c) For the input $x[n] = 2\delta[n] - \delta[n-2]$, plot the output signal $y[n]$.

