

Consider the above LTI system where

v[n] = x[n] + 0.5x[n-2] and $H_2(e^{j\hat{\omega}}) = 1 - e^{-j\hat{\omega}} + e^{-j2\hat{\omega}}$

(a) Determine the system functions $H_1(z)$ and $H_2(z)$. $H_1(z) =$

$H_2(z) =$		
$\Pi_2(z) =$		

- (b) Determine the difference equation that relates the output y[n] to the input x[n].
- (c) Determine *all* of the zeros of the equivalent system $H_{eff}(z)$ and plot them in the z-plane.

(d) Determine the input frequencies $\hat{\omega}$ that are nulled by this system (assume no aliasing). **EXPLAIN your answer.**