In the analysis of the beating tones, the problem can be expressed as the sum of two rotating phasors:

$$
x(t)=e^{j \omega_{0} t}+0.7 e^{j\left(\omega_{0}+\delta\right) t}=e^{j \omega_{0} t}\left(1+0.7 e^{j \delta t}\right)
$$

(a) For the term in parentheses, $\left(1+0.7 e^{j \delta t}\right)$, sketch a phasor diagram to show the rotation as a function of t.
(b) Derive an algebraic expression for the magnitude-squared of the term $\left(1+0.7 e^{j \delta t}\right)$. Since the magnitude-squared is purely real, your answer for this part should contain no imaginary terms.
(c) From either the diagram in part (a) or the formula in part (b) make a plot of the magnitude (or magnitude-squared) of the term $\left(1+0.7 e^{j \delta t}\right)$ versus t.

