PROBLEM:

Let $x(t) = 9\sin(52.5\pi t)$. The discrete-time signal x[n] is obtained by sampling x(t) at a rate f_s ; and the resulting x[n] can be written as:

$$x[n] = A\cos(\omega_0 n + \phi)$$

- (a) If the sampling frequency is $f_s = 30$ samples/sec, determine the values of A, ϕ and ω_0 . In addition, state whether or not the signal has been oversampled or undersampled.
- (b) Make a plot of the rotating phasor $Ae^{j\phi}e^{j\omega_0 n}$ for n = 0, 1, ..., 10. Use the values of A, ϕ and ω_0 from part (a).