Let $x(t)=9 \sin (52.5 \pi t)$. The discrete-time signal $x[n]$ is obtained by sampling $x(t)$ at a rate f_{s}; and the resulting $x[n]$ can be written as:

$$
x[n]=A \cos \left(\omega_{0} n+\phi\right)
$$

(a) If the sampling frequency is $f_{s}=30$ samples $/ \mathrm{sec}$, determine the values of A, ϕ and ω_{0}. In addition, state whether or not the signal has been oversampled or undersampled.
(b) Make a plot of the rotating phasor $A e^{j \phi} e^{j \omega_{0} n}$ for $n=0,1, \ldots, 10$. Use the values of A, ϕ and ω_{0} from part (a).

