PROBLEM:

(a) The signal x(t) can be represented as $x(t) = \Re e\{Xe^{j\omega_0 t}\}$. Determine X and ω_0 and plot X as a vector

all the phasors used in the solution.

- in the complex plane.
- (b) Consider the signal $w(t) = \frac{dx(t)}{dt}$, which can be expressed as $w(t) = \Re e\{We^{j\omega_0 t}\}$. What operation on the phasor X corresponds to the operation of differentiation? That is, how is W related to X?

In all parts of this problem, consider a signal $x(t) = 100 \sin(400\pi t + \pi/2)$.

(c) Express the signal y(t) = x(t) + w(t) in the form $y(t) = A\cos(\omega_0 t + \phi)$. Plot in the complex plane,