In all parts of this problem, consider a signal $x(t)=100 \sin (400 \pi t+\pi / 2)$.
(a) The signal $x(t)$ can be represented as $x(t)=\Re e\left\{X e^{j \omega_{0} t}\right\}$. Determine X and ω_{0} and plot X as a vector in the complex plane.
(b) Consider the signal $w(t)=\frac{d x(t)}{d t}$, which can be expressed as $w(t)=\Re e\left\{W e^{j \omega_{0} t}\right\}$. What operation on the phasor X corresponds to the the operation of differentiation? That is, how is W related to X ?
(c) Express the signal $y(t)=x(t)+w(t)$ in the form $y(t)=A \cos \left(\omega_{0} t+\phi\right)$. Plot in the complex plane, all the phasors used in the solution.

