For both parts below draw a phasor diagram
(a) Solve for $x[n]$ in the following equation:

$$
x[n]+2 \cos \left(\hat{\omega}_{0} n+5 \pi / 4\right)+2 \cos \left(\hat{\omega}_{0} n+7 \pi / 4\right)=0
$$

Express $x[n]$ in the form $x[n]=A \cos \left(\hat{\omega}_{0} n+\phi\right)$
(b) Use the idea of a "rotating phasor" to find a solution to

$$
y[n]=-y[n-2]+3 \cos \left(\hat{\omega}_{0} n-\pi / 2\right) \quad \text { for all } n
$$

when $\hat{\omega}_{0}=\pi / 4$. Express the answer for $y[n]$ in the form $y[n]=A \cos \left(\hat{\omega}_{0} n+\phi\right)$. Show the vector diagram of the phasor addition for a fixed value of n.

