PROBLEM:

An amplitude modulated (AM) cosine wave is represented by the formula

$$x(t) = [A + \sin(\omega_0 t)] \sin(\omega_c t)$$

where $0 < \omega_0 \ll \omega_c$.

(a) Use *phasors* to show that
$$x(t)$$
 can be expressed in the form:

$$x(t) = A_1 \cos(\omega_1 t + \phi_1) + A_2 \cos(\omega_2 t + \phi_2) + A_3 \cos(\omega_3 t + \phi_3)$$

$$x(t) = A_1 \cos(\omega_1 t + \psi_1) + A_2 \cos(\omega_2 t + \psi_2) + A_3 \cos(\omega_1 t + \psi_2) + A_3 \cos(\omega_2 t + \psi_2) + A_3 \cos(\omega_1 t + \psi_2) + A_3 \cos(\omega_2 t + \psi_2) + A_3 \cos(\omega_1 t + \psi_2) + A_3 \cos(\omega_2 t + \psi_2) +$$

of the plot. Label your plot in terms of the unknown As and ω s.

where $\omega_1 < \omega_2 < \omega_3$; i.e., find A_1 , A_2 , A_3 , ϕ_1 , ϕ_2 , ϕ_3 , ω_1 , ω_2 , ω_3 in terms of A, ω_0 , and ω_c . (b) Sketch the two-sided spectrum of this signal on a frequency axis. Be sure to label important features