PROBLEM:

Suppose that a discrete-time signal $x[n]$ is given by the formula

$$
x[n]=10 \cos (0.25 \pi n+\pi / 2)
$$

and that it was obtained by sampling a continuous-time signal at a sampling rate of $f_{s}=1000$ samples/second.
(a) Determine two different continuous-time signals $x_{1}(t)$ and $x_{2}(t)$ whose samples are equal to x [n]; i.e., find $x_{1}(t)$ and $x_{2}(t)$ such that $x[n]=x_{1}\left(n T_{s}\right)=x_{2}\left(n T_{s}\right)$ if $T_{s}=0.001$. Both of these signals should have a frequency less than 1000 Hz . Give a formula for each signal.
(b) If $x[n]$ is given by the equation above, what signal will be reconstructed by an ideal D-to-C converter operating at sampling rate 1000 samples/second?

