PROBLEM:

A linear time-invariant filter is described by the difference equation

$$y[n] = 0.9y[n-1] - 0.9x[n] + x[n-1]$$

- (a) Determine the system function H(z) for this system. Express H(z) as a ratio of polynomials in z^{-1} and as a ratio of polynomials in z.
- (b) Plot the poles and zeros of H(z) in the z-plane.
- (c) From H(z), obtain an expression for $H(e^{j\hat{\omega}})$, the frequency response of this system.
- (d) Show that $|H(e^{j\hat{\omega}})|^2 = 1$ for all $\hat{\omega}$.

Answers to Problem 6.1:

(a)
$$H(z) = \frac{1}{3}(1 + z^{-1} + z^{-2})$$

(b) Poles at z = 0 (2 of them); Zeros at $z = e^{\pm j (2\pi/3)}$

(c)
$$H(e^{j\hat{\omega}}) = \frac{1}{3}(1 + e^{-j\hat{\omega}} + e^{-j\hat{\omega}}) = \frac{\sin(3\hat{\omega}/2)}{3\sin(\hat{\omega}/2)}e^{-j\hat{\omega}}$$

(d) Sketch
$$|H(e^{j\hat{\omega}})| = \left|\frac{\sin(3\hat{\omega}/2)}{3\sin(\hat{\omega}/2)}\right|$$
 and $\arg\{H(e^{j\hat{\omega}})\} = -\hat{\omega}$.

(e)
$$y[n] = 4 + 0.8047 \cos[0.25\pi (n-2)]$$