Given a feedback filter defined via the recursion:

$$
y[n]=-y[n-5]+x[n] \quad(\text { Difference EQUATION })
$$

(a) Determine the system function $H(z)$.
(b) How many poles does the system have? Compute and plot the pole locations.
(c) When the input to the system is the two-point pulse signal:

$$
x[n]= \begin{cases}+1 & \text { when } n=0,1 \\ 0 & \text { when } n \neq 0,1\end{cases}
$$

determine the output signal $y[n]$, so that you can make a plot of its general form. Assume that the output signal is zero for $n<0$.
(d) The output signal is periodic for $n>0$. Determine the period.

