PROBLEM:

For both parts below draw a *phasor diagram* to illustrate the solution.

(a) Solve for
$$x[n]$$
 in the following equation:

$$x[n] = 2\cos(n - 5\pi) + \cos(n + 2\pi)$$

 $x[n] = 2\cos(n - 5\pi) + \cos(n + 3\pi/4) - \cos(n - 7\pi/2)$

Express the answer for
$$x[n]$$
 in the form $x[n] = A\cos(\omega_0 n + \phi)$

(b) Use the idea of a "rotating phasor" to find a solution to

for $n = 0, \pm 1, \pm 2, \dots$

$$2A\cos(\omega_0 n + \phi) + 3A\cos(\omega_0 (n-1) + \phi) = \sin(\pi n/4)$$

$$2A\cos(\omega_0 n + \phi) + 3A\cos(\omega_0 (n - 1) + \phi) = \sin(\pi n/4)$$
 for all n

Determine numerical values for ω_0 , A and ϕ . Show the vector diagram of the phasor addition for the fixed value of n = 0.