For both parts below draw a phasor diagram to illustrate the solution.
(a) Solve for $x[n]$ in the following equation:

$$
x[n]=2 \cos (n-5 \pi)+\cos (n+3 \pi / 4)-\cos (n-7 \pi / 2) \quad \text { for } n=0, \pm 1, \pm 2, \ldots
$$

Express the answer for $x[n]$ in the form $x[n]=A \cos \left(\omega_{0} n+\phi\right)$
(b) Use the idea of a "rotating phasor" to find a solution to

$$
2 A \cos \left(\omega_{0} n+\phi\right)+3 A \cos \left(\omega_{0}(n-1)+\phi\right)=\sin (\pi n / 4)
$$

Determine numerical values for ω_{0}, A and ϕ.
Show the vector diagram of the phasor addition for the fixed value of $n=0$.

