PROBLEM:

A discrete-time signal x[n] is known to be a sinusoid:

$$x[n] = A\cos(\omega_0 n + \phi)$$

The values of x[n] are tabulated for n = 0, 1, 2, 3, 4, 5 and 6.

n	0	1	2	3	4	5	6
x[n]	-2.5000	-0.5226	1.5451	3.3457	4.5677	5.0000	4.5677

- (a) Plot x[n] vs. n.
- (b) Prove (via phasors, not trig) the following identity for the cosine signal:

$$\beta = \frac{\cos(n+1)\omega_0 + \cos(n-1)\omega_0}{\cos(n+1)\omega_0}$$
 for

 $\beta = \frac{\cos(n+1)\omega_0 + \cos(n-1)\omega_0}{\cos(n+1)\omega_0}$ for all *n*

Determine the value of the constant β . Note: β does not depend on n, but it might be a function of ω_0 . (c) Now determine the numerical values of A, ϕ and ω_0 . (Hint: find ω_0 first.)