A discrete-time signal $x[n]$ is known to be a sinusoid:

$$
x[n]=A \cos \left(\omega_{0} n+\phi\right)
$$

The values of $x[n]$ are tabulated for $n=0,1,2,3,4,5$ and 6 .

n	0	1	2	3	4	5	6
$x[n]$	-2.5000	-0.5226	1.5451	3.3457	4.5677	5.0000	4.5677

(a) Plot $x[n]$ vs. n.
(b) Prove (via phasors, not trig) the following identity for the cosine signal:

$$
\beta=\frac{\cos (n+1) \omega_{0}+\cos (n-1) \omega_{0}}{\cos n \omega_{0}} \quad \text { for all } n
$$

Determine the value of the constant β. Note: β does not depend on n, but it might be a function of ω_{0}.
(c) Now determine the numerical values of A, ϕ and ω_{0}. (Hint: find ω_{0} first.)

