PROBLEM:

Consider the following system. Ideal Ideal

(a) Suppose that the discrete-time signal x[n] is given by the formula

$$x[n] = 10\cos(0.18\pi n + \pi/4)$$

-2000

If the sampling rate is $f_s = 2500$ samples/second, determine two different continuous-time signals $x(t) = x_1(t)$ and $x(t) = x_2(t)$ that could have been inputs to the above system; i.e., find $x_1(t)$ and

the ideal D-to-C converter operating at sampling rate 2500 samples/second? (c) If the input x(t) is given by the two-sided spectrum representation shown below, determine a simple

500

f (in Hz)

2000

For
$$x[n]$$
 given in part (a), what is the frequency of the analog signal $y(t)$ that will be reconstrated ideal D-to-C converter operating at sampling rate 2500 samples/second?

If the input $x(t)$ is given by the two-sided spectrum representation shown below, determine a formula for $y(t)$ when $f_s = 2500$ samples/sec. (for both the C/D and D/C converters).

$$4e^{j\pi/4}$$

$$2e^{-j3\pi/2}$$

-500