PROBLEM:

(d) Show that $|\mathcal{H}(\hat{\omega})|^2 = 1$ for all $\hat{\omega}$.

A linear time-invariant filter is described by the difference equation

(a) Determine the system function
$$H(z)$$
 for this system. Express $H(z)$ as a ratio of polynomials in z^{-1}

v[n] = 0.8v[n-1] - 0.8x[n] + x[n-1]

(negative powers of z) and also as a ratio of polynomials in positive powers of z.(b) Plot the poles and zeros of H(z) in the z-plane.

(b) From the poles and zeros of H(z) in the z-plane.

(c) From H(z), obtain an expression for $\mathcal{H}(\hat{\omega})$, the frequency response of this system.