PROBLEM:

Suppose that three systems are hooked together in "cascade." In other words, the output of \mathcal{S}_{1} is the input to \mathcal{S}_{2}, and the output of \mathcal{S}_{2} is the input to \mathcal{S}_{3}. The three systems are specified as follows:

$$
\begin{array}{ll}
\mathcal{S}_{1}: & y_{1}[n]=x_{1}[n]-x_{1}[n-1] \\
\mathcal{S}_{2}: & y_{2}[n]=x_{2}[n]+x_{2}[n-2] \\
\mathcal{S}_{3}: & y_{3}[n]=x_{3}[n-1]+x[n-2]
\end{array}
$$

NOTE: the output of \mathcal{S}_{i} is $y_{i}[n]$ and the input is $x_{i}[n]$.
Determine the equivalent system that is a single operation from the input $x[n]$ (into \mathcal{S}_{1}) to the output $y[n]$ which is the output of \mathcal{S}_{3}. Thus $x[n]$ is $x_{1}[n]$ and $y[n]$ is $y_{3}[n]$. Write one difference equation that defines the overall system in terms of $x[n]$ and $y[n]$ only..

