PROBLEM:

Circle the correct answer to each of these short answer questions:

1. A signal
$$x(t)$$
 is defined by: $x(t) = \Re \{(1+j)e^{j\pi t}\}$. Its shortest period (T) is

1. A signal
$$x(t)$$
 is defined by: $x(t) = \Re\{(1+j)e^{j\pi t}\}$. Its shortest

(a)
$$T = 1$$
 sec.

(d)
$$T = \pi$$
 sec.

2. A sinusoidal signal
$$x(t)$$
 is defined by: $x(t) = \Re\{(1+j)e^{j\pi t}\}$. When plotted versus time (t) , its maximum value will be:

(b) T = 2 sec.(c) T = 0.5 sec.

A sinusoidal signal
$$x(t)$$
 is naximum value will be:

sinusoidal signal
$$x(t)$$
 is caximum value will be:

maximum value will be:

(a)
$$A = 1$$

(a)
$$A = 1$$

(b) $A = 1 + j$

(c)
$$A = \sqrt{2}$$

- (d) A = 0
 - (e) none of the above

- 3. Determine the amplitude (A) and phase (ϕ) of the sinusoid that is the sum of the following three sinusoids: $10\cos(6t + \pi/2) + 7\cos(6t - \pi/6) + 7\cos(6t + 7\pi/6)$,
 - (a) A = 10 and $\phi = \pi/2$. (b) $A = 7 \text{ and } \phi = \pi/2.$
 - (c) A = 3 and $\phi = 0$.
- (d) $A = 3 \text{ and } \phi = \pi/2$.
- (e) A = 24 and $\phi = \pi/2$.

- 4. Evaluate the complex number $z = \frac{j^{-1} j^{-2}}{j^{-3} + j^{-4}}$.
- (a) z = 0

- (b) z = i(c) z = -i
- (d) z = 1(e) z = -1