Circle the correct answer to each of these short answer questions:

1. A signal $x(t)$ is defined by: $x(t)=\mathfrak{R e}\left\{(1+j) e^{j \pi t}\right\}$. Its shortest period (T) is
(a) $T=0.5 \mathrm{sec}$.
(b) $T=1 \mathrm{sec}$.
(c) $T=2 \mathrm{sec}$.
(d) $T=\pi \mathrm{sec}$.
(e) none of the above
2. A sinusoidal signal $x(t)$ is defined by: $x(t)=\Re e\left\{(1+j) e^{j \pi t}\right\}$. When plotted versus time (t), its maximum value will be:
(a) $A=1+j$
(b) $A=\sqrt{2}$
(c) $A=1$
(d) $A=0$
(e) none of the above
3. Determine the amplitude (A) and phase (ϕ) of the sinusoid that is the sum of the following three sinusoids: $10 \cos (6 t+\pi / 2)+7 \cos (6 t-\pi / 6)+7 \cos (6 t+7 \pi / 6)$,
(a) $A=3$ and $\phi=0$.
(b) $A=3$ and $\phi=\pi / 2$.
(c) $A=10$ and $\phi=\pi / 2$.
(d) $A=7$ and $\phi=\pi / 2$.
(e) $A=24$ and $\phi=\pi / 2$.
4. Evaluate the complex number $z=\frac{j^{-1}-j^{-2}}{j^{-3}+j^{-4}}$.
(a) $z=-j$
(b) $z=1$
(c) $z=0$
(d) $z=j$
(e) $z=-1$
