PROBLEM:

Circle the correct answer to each of these short answer questions:

1. If the impulse response of an FIR filter is defined with a scaling parameter β

$$h[n] = \beta(2\delta[n] - \delta[n-1] + 2\delta[n-2])$$

Determine β so that the DC value of the frequency response $H(e^{j\hat{\omega}})$ will be equal to one.

- (a) $\beta = 1/3$
- (b) $\beta = 1/4$
- (c) $\beta = 1/5$
- (d) $\beta = 1/2$
- (e) $\beta = 1$
- 2. For the following MATLAB code: yy = firfilt ([1,0,0,0,-5], xx) pick the correct difference equation for the filter being implemented.
 - (a) $y[n] = \delta[n] 5\delta[n-1]$
 - (b) $y[n] = \delta[n] 5\delta[n-4]$
 - (c) y[n] = x[n] 5x[n-4]
 - (d) y[n] = x[n-4]
 - (e) y[n] = x[n] 5x[n-1]
- 3. The MATLAB statement: xx = [cos(0.13*pi*(0:2000)), cos(0.17*pi*(0:2000))];,
 - (a) Defines xx as the concatenation of two sinusoids played in succession.
 - (b) Defines xx as the sum of two sinusoids played simultaneously.
 - (c) Defines xx as a frequency response.
 - (d) Defines xx as a spectrogram.
- 4. If a filter is defined by the MATLAB operation: yy = firfilt (0.2*ones(1,5),xx), then the filter is:
 - (a) a highpass IIR filter.
 - (b) a lowpass IIR filter.
 - (c) a highpass FIR filter.
 - (d) a lowpass FIR filter.
 - (e) an allpass filter, i.e., its frequency response magnitude is constant.