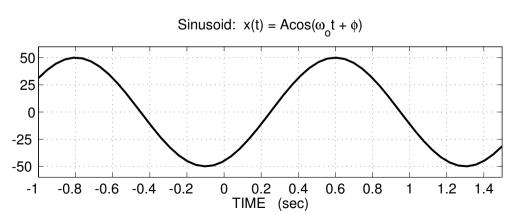
PROBLEM:

For the following short answer questions, write your answers in the space provided or circle the correct answer: $\frac{10}{4k} = 2.5 \text{ s}$

(b) **TRUE** or **FALSE**: "Suppose that the signal x(t) is a *single frequency* sinusoid and its spectrum has frequency components only at $f = \pm 7$ Hz. If a new signal is defined by $y(t) = x(t - \frac{1}{2})$ then y(t)

(a)
$$x(t)$$
 is defined by: $x(t) = \sum_{k=-10}^{10} \frac{4k}{j\pi} e^{j2.5\pi kt}$. Pick the correct response about the period:
(i) The period (T) of $x(t)$ is $T = 1.25$ sec.

(ii) The period
$$(T)$$
 of $x(t)$ is $T = 2.5$ sec.


(iii) The period
$$(T)$$
 of $x(t)$ is $T = 0.4$ sec.

(iv) The period (T) of
$$x(t)$$
 is $T = 0.8$ sec.
(v) The period (T) of $x(t)$ is $T = 2.5\pi$ sec.

has frequency components at the same frequencies **and** the complex amplitudes in the spectrum are the same." EXPLAIN.

(c) In the figure below determine the phase of the sinusoid. Write your answer here:
$$\phi =$$

Sinusoid: $x(t) = Acos(\omega_0 t + \phi)$

(d) In the figure above determine the frequency (ω_0) in radians/sec. Circle the correct answer. (A) 1.4 (B) $5\pi/7$ (C) $10\pi/7$ (D) 5/7 (E) 2.8π