PROBLEM:
Define $x(t)$ as

$$
x(t)=20 \cos (2 \pi t-\pi / 4)+20 \sqrt{3} \cos (2 \pi(t-0.375))
$$

(a) Express $x(t)$ in the form $x(t)=A \cos \left(\omega_{0} t+\phi\right)$ by finding the numerical values of A and ϕ, as well as ω_{0}.
(b) Plot all the complex amplitudes (phasors) as vectors in the complex plane in order to show how vector addition was used to solve part (a)

