
DSP First
Lab 02: Introduction to Complex Exponentials

Lab Report: It is only necessary to turn in a report on Section 5 with graphs and explanations.
You are asked to label the axes of your plots and include a title for every plot. In order to keep
track of plots, include your plot inlined within your report. If you are unsure about what is
expected, ask.

1 Introduction
The goal of this laboratory is to gain familiarity with complex numbers and their use in
representing sinusoidal signals such as)cos()(φω += tAtx as complex exponentials

. The key is to use the appropriate complex amplitude together with the real part
operator as follows:

tjj eAetz ωφ=)(

{ }tjj eAetAtx ωφφω Re)cos()(=+=

2 Pre-Lab
Manipulating sinusoidal functions using complex exponentials turns trigonometric problems into
simple arithmetic and algebra. In this lab, we first review the complex exponential signal and the
phasor addition property needed for adding cosine waves. Then we will use LabVIEW to make
plots of phasor diagrams that show the vector addition needed when adding sinusoids.

2.1 LabVIEW Review
You learned several LabVIEW techniques during the last lab. Here is a list of some of them:

• Where to find DSP First demos
• How to turn on and use Context Help
• Using right-click to find palettes
• How to search for VIs (blocks)
• Using right-click to attach constants,

controls, and indicators
• Where to find the complex operators
• How to create array controls
• How to declare the ‘type’ of an array

• How to change the data
representation of a numeric input

• How to generate a cosine waveform
• How to change the sampling rate and

number of samples generated
• How to use a TripleDisplay.
• How to copy a plot to be pasted into

a word processor.

If you don’t remember how to do these, now is a good time to review lab 1 and refresh your
memory.

2.2 Complex Numbers in LabVIEW
LabVIEW can be used to compute complex-valued formulas and also to display the results as
vector or “phasor” diagrams. For this purpose several new LabVIEW VI’s have been written
and are available at www.rose-hulman.edu/DSPFirst. You installed these for the previous lab.
To be sure these have been installed,

1. Start LabVIEW
2. Open a Blank VI

may Page 1 3/16/2006

http://www.rose-hulman.edu/DSPFirst

3. Go to the block diagram view and right-click. You should see

If you don’t see the DSP First blocks at the bottom, go to the “Getting Started” section of the CD
and following the installation instructions there.

1. Open ComplexArrayDemo.vi1. On the block diagram (<Ctrl-E>) you will see

2. Click on the Retain Wire Values button circled above. This allows probes to work after

the VI has stopped executing.
3. Right-click on the wire coming from Complex Array in and select Custom

Probe»zvectPa.vi. After running you will see

1 Hint: Help»Find Examples and search for dsp.

may Page 2 3/16/2006

This is showing each of the three complex values with the real part on the x-axis and the
imaginary part on the y-axis. It also shows a circle of radius one (the unit circle). Notice

that the zvect VI () does the same thing but produces a graph as an output.
4. After removing that probe and selecting Custom Probe»zprintPa.vi you will see:

The left most number is the index of the first value of the array that is shown. If you
change this value and run the VI again all the other values will change too allowing you
to see other values in the array. Try it.

5. A MathScript node is an easy way to generate vectors with complex values. The
example below generates a vector of five complex values and plots them on the complex
plane. Try it. Get a MathScript node2 and right click on the right edge and select Add
Output. Call the output xx. Right-click on xx and select Choose Data Type»1D-
Array»CDB 1D. This says xx is a vector (1D Array) of complex values. Next enter the
expression as shown above3. If you enter a bad expression, the run arrow for the VI will
disappear until you fix it. The middle block shown above is a zvect VI. Get it from the
DSP First palette. Right-click on its output and select Create»Indicator. The XY
Graph should appear. Click Run and see what happens.

Here are some of LabVIEW's built-in complex number operators:

XY Graph isn’t in the palette,
you have to use “create
indicator.”

2 Hint: Search for it.
3 Does the syntax in the MathScript node look familiar? Yup, it’s pretty much MATLAB.

may Page 3 3/16/2006

Use the help system to learn what each one does. Each of these takes a vector as its input
argument and operates on each element of the vector.

When unsure about a command, use Context Help (<Ctrl-h>)

2.3 Sinusoid Addition Using Complex Exponentials
Recall that sinusoids may be expressed as the real part of a complex exponential:
 { }tfjj eAetfAtx 02

0 Re)2cos()(πφφπ =+= (1)
The Phasor Addition Rule shows how to add several sinusoids:

 (2) ∑
=

+=
N

k
kk tfAtx

1
0)2cos()(φπ

assuming that each sinusoid in the sum has the same frequency, f0. This sum is difficult to
simplify using trigonometric identities, but it reduces to an algebraic sum of complex numbers
when solved using complex exponentials. If we represent each sinusoid with its complex
amplitude
 (3) kj

kk eAX φ=
Then the complex amplitude of the sum is

 (4) sj
s

N

k
ks eAXX φ== ∑

=1

Based on this complex number manipulation, the Phasor Addition Rule implies that the
amplitude and phase of x(t) in equation (2) are As and φs, so
)2cos()(0 ss tfAtx φπ += (5)
We see that the sum signal x(t) in (2) and (5) is a single sinusoid that still has the same
frequency, f0, and it is periodic with period T0=1/f0.

2.4 Harmonic Sinusoids
There is an important extension where x(t) is the sum of N cosine waves whose frequencies (fk)
are different. If we concentrate on the case where the (fk) are all multiples of one basic frequency
f0, i.e.,
 Fk=kf0 (Harmonic Frequencies)
then the sum of N cosine waves given by (2) becomes

 (6)
⎭
⎬
⎫

⎩
⎨
⎧

=+= ∑∑
==

N

k

tkfj
k

N

k
kkh

oeXtkfAtx
1

2

1
0 Re)2cos()(πφπ

This particular signal xh(t) has the property that it is also periodic with period T0=1/f0, because
each of the cosines in the sum repeats with period T0. The frequency f0 is called the fundamental
frequency, and T0 is called the fundamental period. (Unlike the single frequency case, there is no
phasor addition theorem here to combine the harmonic sinusoids.)

may Page 4 3/16/2006

2.5 Complex Numbers
This section will test your understanding of complex numbers. Use and
z

3/2
1 10 πjez =

2 = -5 + j5 for all parts of this section.
(a) Modify your MathScript node4 (multiple lines of code are allowed) to generate the

complex numbers z1 and z2. Create two separate outputs on your MathScript node.
Plot them with zvect. See ComplexArrayDemo.vi for examples of how this is
done. Hint: Use the Build Array VI5 to combine z1 and z2 into an array and then use
zvect. Don’t forget to switch Build Array to concatenate6.
When unsure about a command, use Context Help.

(b) The VI zcat.vi can be used to plot vectors in a “head-to-tail” format. Use an array
control to create a complex array with values [j,-1,-2j,1]. Attach this to the zcat VI
and graph the results to see how zcat works when its input is a vector of complex
numbers.

(c) Compute z1+z2 and plot the sum using zvect. Then use zcat to plot z1 and z2 as 2
vectors head-to-tail, thus illustrating the vector sum.

(d) Compute z1 z2 and plot the answer using zvect to show how the angles of z1 and z2
determine the angle of the product. Use the probe zprint to display the result
numerically.

(e) Compute z1/z2 and plot the answers using zvect to show how the angles of z1 and z2
determine the angle of the quotient. Use the probe zprint to display the result
numerically.

(f) Compute the conjugate z* for both z1 and z2 and plot the results. Display the results
numerically with zprint.

(g) Compute the inverse 1/z for both z1 and z2 and plot the results. Display the results
numerically with zprint.

(h) Arrange your front panel into a 2 by 2 grid of graphs that displays the following four
plots:
a. z1 and z2 on the same plot.
b. z1

* and z2
* on the same plot;

c. 1/z1 and 1/z2 on the same plot; and
d. z1 z2.

2.6 ZDrill
There is a complex numbers drill program called zdrill which uses LabVIEW to generate
complex number problems and check your answers. Select Help»Find Examples… Click
the Search tab and type dsp. Double-click on DSPFirst. You will see all the demos for this
class. Double-click on zdrill. Please spend some time with this drill since it is very useful in
helping you to get a feel for complex arithmetic.

You can also get to demos via the DSP First web site. Go to the site and click on the Demos link
on the right. Select a demo and it should run in your browser.

4 Don’t forget to change the output data type to (scalar) CDB.
5 Hint: right-click, click Search, type Build.
6 Right-click on the Build Array VI and select Concatenate Inputs.

may Page 5 3/16/2006

http://yoder-3.institute.rose-hulman.edu/visible3/contents/index.htm

3 Warmup

3.1 Sub VIs
Sub VIs are a special type of VI that can accept inputs and also return outputs. Converting a VI
into a sub VI is rather easy. Here’s an example that shows how to build a sub VI to convert from
degrees to radians.

Front Panel

1. Select File»New and create a new VI.
2. Build a front panel the looks like

3. Make the block diagram look like

4. Test it to be sure it works correctly.
5. Right-click the icon in the upper right corner of the front panel (circled) and select

Edit Icon from the shortcut menu. The Icon Editor dialog box appears.
6. Double-click the Select tool on the left side of the Icon Editor dialog box to select

the default icon.
7. Press the <Delete> key to remove the default icon.
8. Double-click the Rectangle tool to redraw the border.
9. Create the following icon.

All three should be the
same when you’re done.

a. Use the Text tool to click the editing area.
b. Type D and R.
c. Use the Pencil tool to create the arrow.

may Page 6 3/16/2006

Note To draw horizontal or vertical straight lines, press the <Shift> key while you use the
Pencil tool to drag the cursor.

d. Use the Select tool and the arrow keys to move the text and arrow you created.
e. Select the B&W icon and select 256 Colors in the Copy from field to create

a black and white icon, which LabVIEW uses for printing unless you have a
color printer.

f. When the icon is complete, click the OK button to close the Icon Editor
dialog box. The icon appears in the upper right corner of the front panel and
block diagram.

10. Right-click the icon on the front panel and select Show Connector from the shortcut
menu to define the connector pane terminal pattern.
LabVIEW selects a connector pane pattern based on the number of controls and
indicators on the front panel. For example, this front panel has one input terminal,
Degrees, and one output terminal, Radians, so LabVIEW selects a connector pane
pattern with all these terminals.

11. Assign the terminals to the digital control and digital indicator.
a. Select Help»Show Context Help to display the Context Help window. View

each connection in the Context Help window as you make it.
b. Click the left terminal in the connector pane. The tool automatically changes

to the Wiring tool, and the terminal turns black.
c. Click the Degrees control. The left terminal turns orange, and a marquee

highlights the control.
d. Click an open area of the front panel. The marquee disappears, and the

terminal changes to the data type color of the control to indicate that you
connected the terminal.

e. Click the right terminal in the connector pane and click the Radians indicator.
The right terminal turns orange.

f. Click an open area on the front panel. Both terminals are orange.
g. Move the cursor over the connector pane. The Context Help window shows

that both terminals are connected to floating-point values.
12. Select File»Save to save the VI because you will use this VI later in the course. Save

it as D to R.

3.2 Vectorization and For Loops
In this section we’ll test the sub VI you just created and then show how to use a For Loop to use
your VI to convert all the values in an array. First, let’s test it.

3.2.1 Using your sub VI
Here’s how to use your VI:

1. Select File»New and create a new VI.

may Page 7 3/16/2006

2. Go to the block diagram and right-click. Select Functions»Select A VI… (circled)

3. Browse for your VI and select it.
4. Right-click the input and create a control.
5. Right-click the output and create an indicator. It should look like:

6. Test it. Does it work? If not, fix it.

3.2.2 Looping over an array
This VI works fine, but suppose you have a whole array of degree values you would like to
convert to an array to radians? That’s easy if you use a For Loop. Do this:

1. Hold down the Ctrl key and click and drag the D to R VI to make a new one.
2. Right-click on the block diagram and select Functions»Structures.

Select the For Loop as shown above.

3. Click to the upper-left of the new D to R VI and drag to the lower-right. It should
look like:

may Page 8 3/16/2006

You’ve just created a For Loop. This will allow you to run the VI (or whatever you
put in the loop) over and over again.

4. Go to the front panel and create an array of doubles7.
5. Go back to the block diagram and move the array outside of the loop.
6. Attach the array to the input of the D to R VI.

7. Attach the output of the VI to the right edge of the for loop.
8. Right-click on the little square that was just created and select Create»Indicator.

Your diagram should look like above.
9. Return to the front panel and put a few values in the input array and run the VI. Are

the output values correct?
What’s going on here? You’ve just created a for loop that takes the values in the input array, one
at a time and runs them through the D to R VI. It then takes the output, one at a time and puts
them in a new array (Array 2 in this case). This is a very powerful operator that will let you do
repetitive tasks with just a simple loop. Look up help of the For Loop to see what all it can do.
What is that little blue i on the bottom left of the loop? Try connecting it to the right border and
connecting it to an indicator like you did for Array 2. Run the VI. What is i?

3.2.3 Summing elements with a loop
Suppose you would like to sum up all the values from 1 to 5 using a loop. Here’s how you could
do it:

1. Select File»New VI and create a new VI.
2. Create a For Loop.
3. Right-click on the left terminal of the blue N. Select Create Constant. Enter 5.

4. Attach to an array and run the VI.
5. What is output to the array?

7 Hint: See Lab 1.

may Page 9 3/16/2006

3.2.3.1 Working with shift registers
We want to take each value of i and add them up. This means that for each iteration of the loop
we want to add i to a running sum.

1. Right-click on the edge of the For Loop and select Add Shift Register.
2. Some small connectors will appear. Wire them as shown.

3. Run the VI. The shift register takes the output of the add block during one iteration of

the loop and feeds it into the input of the same add block during the next iteration of the
loop. The 0 on the outside left of the loop is the initial value before the loop starts, and
the output attached to Sum is the value after the last iteration of the loop. What is the
value of Sum? Is it the sum of 1 through 5? No, we added up 0 through 4.

4. Change the diagram to sum 1 through 5.
5. Now change it to sum 1 through 100.
6. Now change it to sum 6 through 100. How many times do you have to do the loop to do

this?
7. Now change it so the input is an array and the output is the sum of all the elements in the

array.

4 Complex Exponentials
In the Pre-Lab part of this lab, you learned how to write VIs. In this section; you will write a
sub VI that can generate the sum of sinusoids.

4.1 Sinusoidal Synthesis with a sub VI: Different Frequencies
Since we will generate many functions that are a “sum of sinusoids,” it will be convenient to
have a function for this operation. To be general, we will allow the frequency of each
component fk to be different. The following expressions are equivalent if we define the complex
amplitudes Xk as . kj

kk eAX φ=

 (7)
⎭
⎬
⎫

⎩
⎨
⎧

= ∑
=

N

k

tfj
k

keXtx
1

2Re)(π

 (8) ∑
=

+=
N

k
kkk tfAtx

1
)2cos()(φπ

may Page 10 3/16/2006

4.1.1 Write the sub VI
Write sub VI called sine_syn.vi that will synthesize a waveform in the form of (8). Above right
is what your front panel should look like and below is what block diagram should look like:

may Page 11 3/16/2006

Notice that the input fs defines the number of samples per second for the cosine generation; in
other words, we are no longer constrained to using 20 samples per period.
Include a commented copy of the LabVIEW code with your lab report. Comments are added by
simply double-clicking where you want the comment.

4.1.2 Testing
In order to use this to synthesize periodic (harmonic) waveforms, you would simply choose the
entries in the frequency vector to be integer multiples of the desired fundamental frequency. Try
the following tests and plot the results (if the function does not return an error). Make a subplot
with all the working test cases. Measure the period of x4 (by hand).
Signal Fk Ak φk fs duration

x1 50 2 -π/2 1000 0.1
x2 80, 80 1, 1 π/2, π 1000 0.1
x3 50, 50, 50 1, 2, 1 -π/2, 0, -π/2 1000 0.1
x4 100, 150, 200 1, 1, ½ π/2, 0, -π/2 2000 0.1

5 Lab Exercise: Representation of Sinusoids
Be aware that you can also use the DSP First probe zprint to print the polar and rectangular
forms of any vector of complex numbers.

a) Generate the signal { }tjtjtj ejeetx πππ)1(22Re)()25.1(−++= − and make a plot versus t.
Use the sine_syn VI and take a range for t that will cover three periods. Include the
LabVIEW code with your report. Be sure to comment it.

b) From the plot of x(t) versus t, measure the frequency, phase and amplitude of the
sinusoidal signal by hand. Show annotations on the plots to indicate how these
measurements were made and what the values are. Compare to the calculation in part (c).

c) Use the phasor addition theorem and LabVIEW to determine the magnitude and phase of
x(t).

may Page 12 3/16/2006

6 FAQ

6.1 What is a Waveform?
The DSP First Function Generator VI produces an output whose data type is a waveform. The
waveform data type carries the data (as an array, Y), time between samples (dt) and the start time
of a waveform (t0). If you invert dt, you get the sampling rate (fs) of the signal. We will
generally ignore the start time. Click the Waveform symbol (circled below left) to see the VIs
for working with waveforms. The two most useful VIs are circled in the middle. These VIs let
you access the Y and dt values in a waveform, and build your own waveform from an array.

6.2 The phase output of the Generator doesn’t appear correct. How
do I fix it?

By default the generator assumes you are going to use it to append one waveform after another.
Therefore it makes a smooth transition between the two as shown in the left figure.

1

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

Time
2.151.95 2 2.05 2.1

Plot 0Waveform Graph

1

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

Time
2.151.95 2 2.05 2.1

Plot 0Waveform Graph

To do this it must ignore the phase input after the first time through the loop. Attach a true
constant to the reset signal input to have the phase used each time through the loop. You will
get a result like the right figure.

may Page 13 3/16/2006

6.3 When adding waveforms in a for loop how do I initialize the shift
register?

The easiest way is to attach function generator (outside the loop) to the shift register
initialization. Set the amplitude on the generator to 0 and attach the same sampling info as you
did to the generator in the loop.

6.4 The Sampling Info input to the Waveform Generator has two
values, Fs and #s. How do I control these separately?

Use a Bundle (Search for Bundle). It will combine two inputs into one. Don’t worry if you get
an error when you attach the Bundle to the generator. The error will go away once you’ve
attached the correct inputs to the Bundle.

8 LabVIEW things to remember for future labs:
• How to use probes.
• How to convert a VI to a sub VI

o Adding terminals to a sub VI
o Adding a sub VI to a block diagram

• How to use a for loop
o Iterating over an array
o Using N to specify the number of iterations
o Using i
o Using shift registers to carry values from one iteration to another.

• … What else?

may Page 14 3/16/2006

	Introduction
	Pre-Lab
	LabVIEW Review
	Complex Numbers in LabVIEW
	Sinusoid Addition Using Complex Exponentials
	Harmonic Sinusoids
	Complex Numbers
	ZDrill

	Warmup
	Sub VIs
	Vectorization and For Loops
	Using your sub VI
	Looping over an array
	Summing elements with a loop
	Working with shift registers

	Complex Exponentials
	Sinusoidal Synthesis with a sub VI: Different Frequencies
	Write the sub VI
	Testing

	Lab Exercise: Representation of Sinusoids
	FAQ
	What is a Waveform?
	The phase output of the Generator doesn’t appear correct. H
	When adding waveforms in a for loop how do I initialize the
	The Sampling Info input to the Waveform Generator has two va

	LabVIEW things to remember for future labs:

