
DSP First, 2e Signal Processing First

Lab P-7: FM Synthesis for Musical Instruments - Bells and Clarinets

Pre-Lab and Warm-Up: You should read at least the Pre-Lab and Warm-up sections of this lab assignment
and go over all exercises in the Pre-Lab section before going to your assigned lab session.

Verification: The Warm-up section of each lab must be completed during your assigned Lab time and
the steps marked Instructor Verification must also be signed off during the lab time. One of the laboratory
instructors must verify the appropriate steps by signing on the Instructor Verification line. When you have
completed a step that requires verification, simply demonstrate the step to the instructor. Turn in the com-
pleted verification sheet to your instructor when you leave the lab.

Lab Report: Write a lab report on Section 3 with graphs and explanations. Please label the axes of your
plots and include a title for every plot. In order to keep track of plots, include each plot inlined within your
report. If you are unsure about what is expected, ask the instructor who will grade your report.

1 Introduction

The objective of this lab is to introduce more complicated signals that are related to the basic sinusoid. These
signals, which implement frequency modulation (FM) and amplitude modulation (AM), are widely used in
communication systems such as radio and television), but they also can be used to create interesting sounds
that mimic musical instruments. There are demonstrations on the companion website that provide examples
of these signals for many different conditions, e.g., Demos:FM Synthesis

2 Overview

Frequency modulation (FM) can be used to make interesting sounds that mimic musical instruments, such
as bells, woodwinds, drums, etc.

The goal in this lab is to implement one or two of these FM schemes and hear the results.
We have already seen that FM defines the signal x.t/ as a cosine with time-varying angle

x.t/D Acos. .t//

and that the instantaneous frequency changes according to the derivative of  .t/. If  .t/ is linearly increas-
ing with time, x.t/ is a constant-frequency sinusoid; whereas, if  .t/ is quadratic in time, x.t/ is a chirp
signal whose frequency changes linearly in time. FM music synthesis uses a more interesting  .t/, one that
is sinusoidal. Since the derivative of a sinusoidal  .t/ is also sinusoidal, the instantaneous frequency of x.t/
will oscillate. This is useful for synthesizing instrument sounds because the proper choice of the modulating
frequencies will produce a fundamental frequency and several overtones, as many instruments do.

The general equation for an FM sound synthesizer is

x.t/D A.t/cos.2�fctCI.t/cos.2�fmtC'm/C'c/ (1)

where A.t/ is the signal’s amplitude. It is a function of time so that the instrument sound can be made to
fade out slowly or cut off quickly. Such a function is called an envelope. The constant parameter fc is called
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the carrier frequency. Note that when you take the derivative of  .t/ to find the instantaneous frequency
fi .t/, the result is

fi .t/ D
1

2�

d

dt
 .t/

D
1

2�

d

dt
.2�fctCI.t/cos.2�fmtC'm/C'c/

D fc �I.t/fm sin.2�fmtC'm/C
dI

dt
cos.2�fmtC'm/ (2)

Note that fc is a constant in (2). It is the frequency that would be produced without any frequency modula-
tion. The parameter fm is called the modulating frequency. It expresses the rate of oscillation of fi .t/. The
parameters 'm and 'c are arbitrary phase constants, usually both set to ��=2 so that x.0/D 0.

The function I.t/ has a less obvious purpose than the other FM parameters in (1). It is technically called
the modulation index envelope. To see what it does, examine the expression for the instantaneous frequency

(2). The quantity I.t/fm multiplies a sinusoidal variation of the frequency. If I.t/ is constant or
dI

dt
is

relatively small, then I.t/fm gives the maximum amount by which the instantaneous frequency deviates
from fc . Beyond that, however, it is difficult to relate I.t/ to the sound made by x.t/ without some rather
advanced mathematical analysis.

In our study of signals, we would like to characterize x.t/ as the sum of several constant-frequency
sinusoids instead of a single signal whose frequency changes. In this regard, the following are facts that can
be demonstrated experimentally: when I.t/ is small (e.g., I � 1), low multiples of the carrier frequency
.fc/ have high amplitudes. When I.t/ is large .I > 4/, both low and high multiples of the carrier frequency
have high amplitudes. The net result is that I.t/ can be used to vary the harmonic content of the instrument
sound (called overtones). When I.t/ is small, mainly low frequencies will be produced. When I.t/ is large,
higher harmonic frequencies can also be produced. Since I.t/ is a function of time, the harmonic content
will change with time. For more details see the paper by Chowning.1

3 Warm-up

3.1 Chirps and Aliasing

Write a MATLAB function that will synthesize a “chirp” (linear-FM) signal with the following parameters:

1. A total time duration of 2.5 s where the desired instantaneous frequency starts at 13,000 Hz and ends
at 200 Hz.

2. Use a sampling rate of fs D 8000 Hz.

Listen to the signal. What comments can you make regarding the sound of the chirp (e.g., does the frequency
seem to change linearly)? Does it chirp down, or chirp up, or both? Create a spectrogram of your chirp
signal. Use the sampling theorem (from Chapter 4 in the text) to help explain what you hear and see.

In addition, make some theoretical calculations by hand: Determine the range of frequencies (in hertz)
that will be synthesized by this MATLAB script. Make a sketch by hand of the instantaneous frequency
versus time. Explain how aliasing affects the instantaneous frequency that is actually heard. Listen to the
signal again to verify that it has the expected frequency content.

Instructor Verification (separate page)

1Ref: John M. Chowning, “The Synthesis of Complex Audio Spectra by means of Frequency Modulation,” Journal of the Audio
Engineering Society, vol. 21, no. 7, Sept. 1973, pp. 526–534.
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3.2 Wideband FM

Using a sampling rate of fs D 8000 Hz, generate a set of wideband FM signals with sinusoidal modulation
according to the formula2

x.t/D cos.2�f0tCB sin.2�fmt //

evaluated over the time interval 0� t � 1:35 s.

(a) First of all, do the case where f0 D 900 Hz, fm D 3 Hz and B D 200. Generate the signal, plot its
spectrogram and listen to the signal to see if it corresponds to the spectrogram.

(b) Make a sketch (by hand) of the instantaneous frequency for the signal in part (a).
Instructor Verification (separate page)

(c) Now, change fm to be fm D 30 Hz and B D 20, but keep f0 D 900 Hz. Generate the signal, plot its
spectrogram and listen to the signal.

(d) One again, sketch (by hand) the instantaneous frequency for the signal in part (c) to see if it corre-
sponds to the spectrogram.

(e) Now, change fm to be fm D 300 Hz and B D 2, but keep f0 D 900 Hz. Generate the signal, plot its
spectrogram and listen to the signal. This is a case of wideband FM, and the instantaneous frequency
concept no longer explains the sound we hear, but you should write a reasonable explanation for the
spectrum that you observe.
Instructor Verification (separate page)

4 FM Synthesis of Instrument Sounds

4.1 Generating the Bell Envelopes

Now we take the general FM synthesis formula (1) and specialize for the case of a bell sound. The amplitude
envelope A.t/ and the modulation index envelope I.t/ for the bell are both decaying exponentials. That is,
they both have the following form:

y.t/D e�t=� (3)

where � is a parameter that controls the decay rate of the exponential. Since y.0/D 1 and y.�/D 1=e, � is
the time it takes for the signal (3) to decay to 1=e D 36:8% of its initial value. Hence, � is called the time
constant.

Use (3) to write a MATLAB function that will generate a decaying exponential to be used later in syn-
thesizing a bell sound. The file header should look like this:
function yy = bellenv(tau, dur, fsamp);
%BELLENV produces envelope function for bell sounds
%
% usage: yy = bellenv(tau, dur, fsamp);
%
% where tau = time constant
% dur = duration of the envelope
% fsamp = sampling frequency
% returns:
% yy = decaying exponential envelope
% note: produces exponential decay for positive tau

2For examples, consult the demo entitled Spectrograms on the companion website.
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The function will be one or two lines of MATLAB code. The first line should define your time vector based
on fsamp and dur, and the second generates the exponential (3).

The bell’s amplitude envelope, A.t/, and modulation index envelope, I.t/ are identical, up to a scale
factor.

A.t/D A0e
�t=� and I.t/D I0e

�t=�

Hence, one call to the bellenv function will generate the shape for both envelopes.

4.2 Parameters for the Bell

Now that we have the bell’s amplitude and modulation index envelopes, we can create the actual sound
signal for the bell by specifying all the parameters in the general FM synthesis formula (1). The frequencies
fc and fm must be given numerical values. The ratio of carrier to modulating frequency is important in
creating the sound of a specific instrument. For the bell, a good choice for this ratio is 1:2, e.g., fc D 110

Hz and fm D 220 Hz.
Now write a simple M-file bell.m that implements (1) to synthesize a bell sound. Your function should

call bellenv.m to generate A.t/D A0e
�t=� and I.t/D I0e

�t=� .

function xx = bell(ff, Io, tau, dur, fsamp)
%BELL produce a bell sound
%
% usage: xx = bell(ff, Io, tau, dur, fsamp)
%
% where: ff = frequency vector (containing fc and fm)
% Io = scale factor for modulation index
% tau = decay parameter for A(t) and I(t)
% dur = duration (in sec.) of the output signal
% fsamp = sampling rate

4.3 The Bell Sound

Test your bell( ) function using the parameters of case #1 in the table. Play it with the soundsc() function
at 11,025 Hz.3 Does it sound like a bell? The value of I0 D 10 for scaling the modulation index envelope is
known to give a distinctive sound. Later on, you can experiment with other values to get a variety of bells.

CASE fc (Hz) fm (Hz) I0 � (sec) Tdur (sec) fs (Hz)
1 110 220 10 2 6 11,025
2 220 440 5 2 6 11,025
3 110 220 10 12 3 11,025
4 110 220 10 0.3 3 11,025
5 250 350 5 2 5 11,025
6 250 350 3 1 5 11,025

The frequency spectrum of the bell sound is very complicated, but it does consist of spectral lines, which
can be seen with a spectrogram. Among these frequencies, one spectral line will dominate what we hear.
We would call this the note frequency of the bell. It is tempting to guess that the note frequency will be equal

3A higher sampling rate of 11,025 Hz is used because the signal contains many harmonics, some of which might alias if a lower
fs were used. You should experiment with lower values of fs to see if you can hear a difference, e.g., fs D 8000 Hz.
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to fc , but you will have to experiment to find the true answer. It might be fm, or it might be something
else—perhaps the fundamental frequency which is the greatest common divisor of fc and fm.

For each case in the table, do the following:

(a) Listen to the sound by playing it with the soundsc() function.

(b) Calculate the fundamental frequency of the “note” being played. Explain how you can verify by
listening that you have the correct fundamental frequency.

(c) Describe how you can hear the frequency content changing according to I.t/. Plot fi .t/ versus t for
comparison.

(d) Display a spectrogram of the signal. Describe how the frequency content changes, and how that
change is related to I.t/. Point out the “harmonic” structure of the spectrogram, and calculate the
fundamental frequency, f0.

(e) Plot the entire signal and compare it to the envelope A.t/ generated by bellenv.

(f) Plot about 100–200 samples from the middle of the signal and explain what you see, especially the
frequency variation.

If you are making a lab report, do the plots for two cases—choose one of the first four and one of the
last two. Write up an explanation only for the two that you choose.

4.4 Comments about the Bell

Cases #3 and #4 are extremes for choosing the decay rate � . In case #3, the waveform does not decay very
much over the course of three seconds and sounds a little like a sum of harmonically related sinusoids. With
a “faster” decay rate, as in case #4, we get a percussion-like sound. Modifying the fundamental frequency
f0 (determined in part (d) above) should have a noticeable effect on the tone you hear. Try some different
values for f0 by changing fc and fm, but still in the ratio of 1:2. Describe what you hear.

Finally, experiment with different carrier to modulation frequency ratios. For example, in his paper,
Chowning uses a fundamental frequency of f0 D 40 Hz and a carrier to modulation frequency ratio of 5:7.
Try this and a few other values. Which parameters sound “best” to you?

5 Optional: C-Major Scale

Finally, synthesize other note frequencies. For example, try to make the C-major scale consisting of seven
consecutive notes.
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Lab: FM Synthesis of Musical Instruments
INSTRUCTOR VERIFICATION PAGE

For each verification, be prepared to explain your answer and respond to other related questions that the lab
TA’s or professors might ask. Turn this page in at the end of your lab period.

Name: Date of Lab:

Part 3.1 Aliasing of the linear FM Chirp:

Verified: Date/Time:

Part 3.2(a),(b) Sinusoidal FM Signal Generation:

Verified: Date/Time:

Part 3.2(e) Explain why the Wideband FM Spectrogram has the characteristics that you observe. Does the
spectrogram match your “hearing” experience when you listen to the sound in part (e)? Compare your ob-
servations to the spectrogram of other signals that you have seen in the lecture or in the lab. Write a short
explanation in the space below:

Verified: Date/Time:
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6 Woodwinds

As an alternative to the bell sounds, this section shows how different parameters in the same FM synthesis
formula (1) will yield a clarinet sound, or other woodwinds.

6.1 Generating the Envelopes for Woodwinds

There is a function in the FMsynthLab.zip file called woodwenv.m which produces the functions needed to
create both the A.t/ and I.t/ envelopes for a clarinet sound. The file header looks like this:

function [y1, y2] = woodwenv(att, sus, rel, fsamp)
%WOODWENV produce normalized amplitude and modulation index
% functions for woodwinds
%
% usage: [y1, y2] = woodwenv(att, sus, rel, fsamp);
%
% where att = attack TIME
% sus = sustain TIME
% rel = release TIME
% fsamp = sampling frequency (Hz)
% returns:
% y1 = (NORMALIZED) amplitude envelope
% y2 = (NORMALIZED) modulation index envelope
%
% NOTE: attack is exponential, sustain is constant,
% release is exponential

The outputs from woodwenv are normalized so that the minimum value is zero and the max is one. Try the
following statements to see what the function produces:

fsamp = 8000;
Ts = 1/fsamp;
tt = delta : Ts : 0.5;
[y1, y2] = woodwenv(0.1, 0.35, 0.05, fsamp);
subplot(2,1,1), plot(tt,y1), grid on
subplot(2,1,2), plot(tt,y2), grid on

6.2 Scaling the Clarinet Envelopes

Since the woodwind envelopes produced by woodwenv range from 0 to 1, some scaling is necessary to make
them useful in the FM synthesis equation (1). In this section, we consider the general process of linear
re-scaling. If we start with a normalized signal ynorm.t/ and want to produce a new signal whose max is
ymax and whose min is ymin, then we must map 1 to ymax and 0 to ymin. Consider the linear mapping:

ynew.t/D ˛ynorm.t/Cˇ (4)

Determine the relationship between ˛ and ˇ and ymax and ymin, so that the max and the min of ynew.t/ are
correct.
Test this idea in MATLAB by doing the following example (where ˛ D 5 and ˇ D 3):
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ynorm = 0.5 + 0.5*sin( pi*[0:0.01:1]);
subplot(2,1,1), plot(ynorm)
alpha = 5; beta = 3;
ynew = alpha*ynorm + beta; %<------ Linear re-scaling
subplot(2,1,1), plot(ynew)
max(ynorm), min(ynorm) %<--- ECHO the values
max(ynew), min(ynew)

What happens if we make ˛ negative?
Write a short one-line function that implements (4) above. Your function should have the following form:

function y = scale(data, alpha, beta).

6.3 Clarinet Envelopes

For the clarinet sound, the amplitude A.t/ needs no scaling—the MATLAB function sound will automati-
cally scale to the maximum range of the D/A converter. Thus, A.t/ equals the vector y1. From the plot of
y1 shown in Fig. 1, it should be obvious that this envelope will cause the sound to rise quickly to a certain
volume, sustain that volume, and then quickly turn off.

0 0.5 1 1.5 2
0

0.5

1

y1 Envelope

0 0.5 1 1.5 2
0

0.5

1

y2 Envelope

0 0.5 1 1.5 2
0

0.5

1

time  (t)

A(t) Envelope

0 0.5 1 1.5 2
0

2

4

time  (t)

I(t) Envelope

Figure 1: Envelopes for the woodwinds. The functions A.t/ and I.t/ are produced by scaling y1 and y2,
the outputs of woodwenv.

The modulation index envelope, I.t/, however, does not equal y2. The range for I.t/ lies between 2 and
4 as in Fig. 1. Furthermore, there is an inversion so that when y2 is zero, I.t/ should equal 4, and when y2
is one, I.t/ should be 2. Using this information solve for the appropriate ˛ and ˇ then use scale to produce
the modulation index envelope function (I) for a clarinet sound.

6.4 Parameters for the Clarinet

So far we have a general equation for FM signals, an amplitude envelope for the clarinet, and a modulation
index envelope for the clarinet. To create the actual sound signal for the clarinet, we need to specify the
additional parameters in (1). The ratio of carrier to modulating frequency is important in creating the sound
of a specific instrument. For the clarinet, this ratio should be 2:3. The actual note frequency will be the
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greatest common divisor of the carrier and modulating frequencies. For example, when we choose fc D 600

Hz and fm D 900 Hz, the synthesized signal will have a fundamental frequency of f0 D 300 Hz.
Write a simple M-file clarinet.m that implements the FM synthesis equation (1) to synthesize a clarinet

note. Your function should generate the envelopes A.t/ and I.t/ using textttscale and textttwoodwenv. The
function header should look like this:

function yy = clarinet(f0, Aenv, Ienv, dur, fsamp)
%CLARINET produce a clarinet note signal
%
% usage: yy = clarinet(f0, Aenv, Ienv, dur, fsamp)
%
% where: f0 = note frequency
% Aenv = the array holding the A(t) envelope
% Ienv = the array holding the I(t) envelope
% dur = the amount of time the signal lasts
% fsamp = the sampling rate

6.5 Experiment with the Clarinet Sound

Using your clarinet( ) function, create a 250 Hz clarinet note with fs D 8000 or 11,025 Hz. Play it with
the sound( xnote, fs ) function. Does it sound like a clarinet? How can you verify that its fundamental
frequency is at 250 Hz?

Explain how the modulation index I.t/ will affect the frequency content versus time of the clarinet
sound. Describe how you can hear the frequency content changing according to I.t/? Plot the instantaneous
frequency fi .t/ versus t for comparison.

Plot the entire signal and compare it to the amplitude envelope function y1 in Fig. 1. Plot about 100–200
samples from the middle of the signal and explain what you see.
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