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DSP First, 2e Signal Processing First
Lab S-7: Spectrograms of AM and FM Signals

Pre-Lab: Read the Pre-Lab and do all the exercises in the Pre-Lab section prior to attending lab.

Verification: The Exercise section of each lab should be completed during your assigned Lab time and
the steps marked Instructor Verification signed off during the lab time. When you have completed a step
that requires verification, demonstrate the result to your instructor and answer any questions about it. Turn
in the completed verification sheet before you leave the lab.

Lab Homework Questions: The Lab-Homework Sheet has a few lab related questions that can be answered
at your own pace. The completed Lab-HW sheet is due at the beginning of the next lab.

1 Pre-Lab

1.1 Objective

The objective of this lab is to introduce more complicated signals that are related to the basic sinusoid. These
signals which implement frequency modulation (FM) and amplitude modulation (AM) are widely used in
communication systems such as radio and television. In addition, they can be used to create interesting
sounds that mimic musical instruments. There are a number of demonstrations on the companion website
that provide examples of these signals for many different conditions, e.g., FM Synthesis. The resulting signal
can be analyzed to show its time-frequency behavior by using the spectrogram.

This lab studies signal synthesis for AM and FM signals, and their time-frequency content as shown in
a spectrogram. An underlying objective of the lab is to learn more about the spectrogram. There are several
specific steps that will be considered in this lab:

1. Synthesize a beat-note signal with a MATLAB M-file, and display its spectrogram.

2. Study the frequency resolution of the spectrogram for two closely spaced sinusoids.

3. Spectrogram: Make empirical observations of the spectrogram as the section length is changed.
4. Synthesize a linear-FM chirp with a MATLAB M-file, and display its spectrogram.

5. Spectrogram: Create a spectrogram that displays negative frequencies, as well as positive ones.

6. Synthesize a frequency-modulated (FM) signal to match a given spectrogram. i.e, match specific
time-frequency spectral content.

1.2 Overview

We have spent a lot of time learning about the properties of sinusoidal waveforms of the form:
x(t) = AcosQ2r fot +¢) = {(Ael‘/’) i 27Tfol} 0

In this lab, we will extend our treatment of sinusoidal waveforms to more complicated signals composed of
sums of sinusoidal signals, or sinusoids with changing frequency, i.e., frequency-modulated sinusoids.
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1.3 Amplitude Modulation

If we add several sinusoids, each with a different frequency ( f%), we cannot use the phasor addition theorem,
but we can still express the result as a summation of terms with complex amplitudes via:

N
x(t) = Z Apcosufrt +¢r) =N
k=1

N
3 (Akej</’k) eﬂﬂfkt} 2)

k=1

where Akej %k is the complex amplitude of the k™ complex exponential term. The choice of fj will de-
termine the nature of the signal—for amplitude modulation or beat signals we pick two or three frequencies
that are very close together, see Chapter 3.

1.3.1 Beat Control GUI

To assist you in your experiments with beat notes and AM signals, the MATLAB GUI tool called beatcon
has been created. The M-file beatcon.m is part of the DSP-First (or SP-First) Toolbox. This user interface
controller will exhibit the basic signal shapes for beat signals and play the signals. A small control panel
will appear on the screen with buttons and sliders that vary the different parameters for the beat signals. It
can also call a user-written function named beat .m. Experiment with the beatcon control panel and use
it to produce a beat signal with two frequency components: one at 690 Hz and the other at 700 Hz. Use a
longer duration than the default to hear the beat frequency sound.

1.4 Frequency Modulated Signals

In this lab, we will examine signals whose frequency content varies as a function of time. Recall that in a
constant-frequency sinusoid (1) the argument of the cosine is (27 fot + ¢) which is also the exponent of the
complex exponential. We define the argument of the cosine as the angle function. In (1), the angle function
changes linearly versus time, and its time derivative, 27 fp, equals the constant frequency of the cosine.

A generalization is available if we adopt the following notation for the class of signals with time-varying
angle functions:

x(t) = Acos(y (1)) = Ridel VO 3)

where ¥ (¢) is the angle function.! The time derivative of the angle function v/ (¢) in (3) gives a frequency
that we call the instantaneous (radian) frequency:

d
wi(t)=—y(t)  (radls)

If we prefer units in hertz, then we divide by 27 to define the instantaneous (cyclic) frequency:
fO =Ly ) @
(1) = — z
' 27 dt

1.5 Chirp, or Linearly Swept Frequency

A linear-FM chirp signal is a sinusoid whose instantaneous frequency changes linearly from a starting value
to an ending one.> The formula for such a signal can be defined by creating a complex exponential signal
with a quadratic angle function ¥ (). Mathematically, we define ¥ (¢) in (3) as

Y (t) = 2mpt® + 27 fot + ¢

Look for the demo FM Synthesis on the companion website.
2Look for the demo Spectrograms & Sounds: Wideband FM on the companion website.
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The derivative of v (¢) yields an instantaneous cyclic frequency (4) that changes linearly versus time.
fi(t) =2ut + fo (hertz) %)

The slope of f;(¢) is equal to 2y and its ¢ = O intercept is fo. The frequency variation in (5) produced by the
time-varying angle function is called frequency modulation, so these signals are called FM signals. Finally,
since the linear variation of the frequency (5) can produce an audible sound similar to a siren or a bird chirp,
linear-FM signals are also called chirps.
If the signal starts at time ¢ = #; s with a frequency of f; Hz, and ends at time ¢ = ¢, s with a frequency
of f> Hz, then the slope of the line in (5) will be
fa—hi

SLOPE =2y = —— (6)
h—n

Note that if the signal starts at time ¢ = O, then f; = fy is also the starting frequency. Otherwise, fo =

1.6 MATLAB Synthesis of Chirp Signals

In MATLAB signals can only be synthesized by evaluating the signal’s defining formula at discrete instants
of time. These are called samples of the signal. For the chirp we use the following:

x(ty) = Acos(27r/u,% + 2 fotn + @)

where 1, is the n'™ time sample. The following MATLAB code will synthesize a linear-FM chirp:

fSamp = 8000; %$-Number of time samples per second
dt = 1/fSamp;

tStart = 0;

tStop = 1.5;

tt = tStart:dt:tStop;

mu = 600;

fzero = 400;

phi = 2*pi*rand; %-- random phase

oe

% psi = ???272; <=================== FILL IN THE CODE HERE

o0 oe

cc = real( 7.7*exp(j*psi) );

[

soundsc( cc, fSamp ); %-- uncomment to hear the sound

Q

plotspec( cc+j*le-12, fSamp, 256 ), colorbar, grid on %-- with negative frequencies

oe

(a) Determine the total duration of this synthesized signal in seconds, and also the length of the tt vector.
Use MATLAB’s size command to check that the signal vector cc has the expected size.

(b) Determine the range of frequencies (in hertz) that will be synthesized by the MATLAB script above,
i.e., determine the minimum and maximum frequencies (in Hz) that will be heard. This will require
that you relate the parameters u, fo, and ¢ to the minimum and maximum frequencies. Examine the
MATLAB spectrogram to determine the instantaneous (cyclic) frequency f;(¢) versus time. Zoom in
to verify the correct starting and ending frequencies.

(c) The spectrogram usually shows only the frequency components for f > 0, but with the “tiny imagi-
nary part” trick plotspec will show the negative frequency components. We will called this a two-
sided spectrogram. Since the chirp signal is real-valued, the spectrum must have conjugate symmetry,
so the magnitudes of the negative frequency components are a mirror image of those in the positive
frequency region.
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(d) Use soundsc () to listen to the signal in order to determine whether the signal’s frequency content is
increasing or decreasing. Notice that soundsc () needs to know two things: the vector containing the
signal samples, and the rate at which the signal samples are to be played out. This rate should be the
same as the rate at which the signal values were created (£Samp in the code above).

For more information do help sound and help soundsc in MATLAB.

(e) The test case above generates a chirp sound whose frequency starts low and chirps up. Modify the
parameters so that the chirp starts at 3500 Hz and chirps down to 500 Hz.

1.7 Spectrogram of an FM Signal: Sinusoidal Modulation

Define an FM signal whose instantaneous frequency is sinusoidal, i.e.,
wi(t) =2 fe +2macosQnPt +y) rad/s @)
where f, is the center frequency, and the parameters «, 8 and y control the sinusoidal frequency modulation.

(a) Determine the mathematical formula for an FM signal that has the instantaneous frequency in (7).

(b) Write a MATLAB function (or script) to create sinusoidal FM signals of the form defined in (7).
Modify the code in Sect. 1.6 to use the parameters in (7). If you choose to make a function, the
MATLAB function should use the following template:

makeSinusFMvals( alpha, beta, gamma, fc, fSamp, tStart, tStop ).

(c) Create a sinusoidal-FM signal with f. = 100Hz, « = 50, B = 1.5, and y = /3. Make the signal
duration equal to 3.04 secs, starting at ¢+ = 0. Use a sampling rate of 1000 samples/s. The signal
amplitude should be one.

(d) Create a spectrogram of this chirp signal, and use it to verify that you have the correct instantaneous
frequency predicted by (7). The section length should be short enough to track the changing instanta-
neous frequency.

1.8 Review Topic: Spectrograms

The main issue in this lab will be the dependence of the spectrogram on the choice of section length. A
spectrogram is formed by taking successive short sections of a signal and performing an FFT analysis of
each of those sections to get the spectrum. Since this is done repeatedly, the result is the spectrum versus
time, where time is the location of the short sections. For a specific example, assume that the section length is
100, and the signal is a MATLAB vector xx. Then the first short section will be xx (1:100). The sections are
usually overlapped and the default in plotspec is 50% overlap, so the second short section is xx (51:150),
the third xx (101:200), and so on.

The spectrogram image is, in effect, the spectrum versus time, so we need a reference time for each
short section. In plotspec this reference time is the “midpoint” of the section. For the length-100 section,
the reference index is 50, which is then converted to a time (in secs) by using the sampling rate ( fs). When
the spectrogram is displayed as an image, these reference times are used along the horizontal axis.

For more information refer to the write-up in a previous lab.
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2 Lab Exercise

For the lab exercise, you will synthesize some AM and FM signals, and then verify that these signals have
the correct frequency content by using the spectrogram. The objective is to learn enough to be able to discuss
the connection between the time-domain definition of the signal and its frequency-domain content.

For the instructor verification, you will have to demonstrate that you understand concepts in a given
subsection by answering questions from your lab instructor (or TA).

2.1 Beat Notes and Frequency Resolution

In the section on beat notes in Chapter 3 of the text, we discussed signals formed as the product of two
sinusoidal signals of slightly different frequencies; i.e.,

x(t) = Bcos(2mfat + pa) cos2m fet + ¢c) ®)

where f; is the (high) center frequency, and f4 is the (low) frequency that modulates the envelope of the
signal. An equivalent representation for the beat signal is obtained by rewriting the product as a sum:

x(t) = Arcos(2m fit + ¢1) + Az cos(2m fot + ¢2) 9)

It is relatively easy to derive the relationship between the frequencies { f1, f>} and { f¢, fa }.

2.1.1 MATLAB Code for Beat Signals

A beat signal is defined by five parameters { B, f., fa, ¢c, 4 } along with the start and end times and the
sampling rate ( fs), as shown in the following template:

Amp = 10; %-- B in equation above
fc = 1024; %-- center frequency
phic = 2*pi*rand; %-- phase of 2nd sinusoid (random)

fDelta = 4; %-- modulating frequency
phiDelta = 2*pi*rand; $%-- phase of 1lst sinusoid (random)

tStart = 0; %-- starting time (secs)
tStop = 5; %-- ending time (secs)
fSamp = 8000;

)
)

tt = tStart:(1/fSamp):tStop; %$-- vector of times
xx = Amp*cos (2*pi*fc*tt+phic).*cos(2*pi*fDelta*tt+phiDelta)

2.1.2 Beat Note Spectrograms

Beat notes have a simple time-frequency characteristic in a spectrogram. Even though a beat note signal,
when defined as a product in (8), may be viewed as a single frequency signal whose amplitude varies with
time, the spectrum requires an additive combination as in (9) which turns out to be the sum of two sinusoids
with different constant frequencies.

Beat notes provide an interesting way to investigate the time-frequency characteristics of spectrograms.
Although some of the mathematical details require further study beyond this course, it is not difficult to
appreciate the following issue: there is a fundamental trade-off between knowing which frequencies are
present in a signal’s spectrum and knowing how those frequencies vary with time. As discussed previously,
a spectrogram estimates the frequency content over short sections of the signal; this is the Section Length
parameter.’ If we make the section length very short we can track rapid changes in the signal, usually
changes in the frequency content. The tradeoff, however, is that shorter sections may not provide enough

3The section length is often called the window length; the two terms are used interchangeably in DSP.

McClellan, Schafer, and Yoder, DSP First, 2¢, ISBN 0-13-065562-7. 5 McClellan, Schafer and Yoder, Signal Processing First.
Prentice Hall, Upper Saddle River, NJ 07458. @2015 Pearson Education, Inc. Prentice Hall, Upper Saddle River, New Jersey, 2003. @2003 Prentice Hall.



X [ HHTMHM m‘ﬂ’%mﬂw X HHHTHM‘MM el HWH

w\”h

data to do an accurate frequency measurement. On the other hand, long sections allow the spectrogram
to perform excellent frequency measurements, but fail to track sudden frequency changes. For example, if
a signal is the sum of two sinusoids whose frequencies are nearly the same, a very long section length is
needed to “resolve” the two sinusoidal components. This trade-off between the section length (in time) and
the frequency resolution is akin to Heisenburg’s Uncertainty Principle in physics. We can summarize this
discussion by stating the following hypothesis:

The frequency resolution of the spectrogram is inversely proportional to the Section Length.
In other words, when the true spectrum has two lines (at f1 and f5) these two lines will be
visible as distinct lines in the spectrogram if | f1 — f2| & C/ Tsger where C is a proportionality
constant and Tsgcr 1S the section duration in secs.

Note: When using plotspec (xx, fs,Lsect), the section length in samples is an input argument to the
spectrogram function. We can use the sampling rate to convert to duration, Tsger = Lsger/ fs-

We will use beat note signals which consist of two closely spaced spectral lines to confirm this hypothe-
sis. A beat note signal may be viewed as a single frequency signal whose amplitude varies with time, or as
the sum of two sinusoidal signals with different constant frequencies. Both views can be used to explain the
effect of (window) section length when finding the spectrogram of a beat signal.

(a) Use the MATLAB code written in Section 2.1.1 to create and plot a beat signal defined via:
b(t) = 10cos2a(fa)t +@a)cos(2m (1024)t + ¢c),
with a duration of 5s, and a sampling rate of f; = 8000 samples/s. The frequency fa should be set
to 4 Hz, but will be varied in later parts. The phases can be random.

(b) When f4 = 4 determine the locations of the two spectrum lines that you expect to see in the spectro-
gram. In other words, derive (mathematically) the spectrum of the signal defined in part (a).

(c) Make the spectrogram of b(¢) using a (window) section length of Lgpcr = 256 using the commands®*:
plotspec (xx, £Samp, 256) ; colorbar, grid on, zoom on
Comment on what you see. Are there two spectral lines, i.e., (horizontal lines across the spectrogram)?
If necessary, use the zoom tool (in the MATLAB figure window), or zoom on, to examine the important
regions of the spectrogram.

(d) It should not be possible to see both spectrum lines with Lgger = 256. In order to get both lines a
longer section length is needed, so try doubling the section length. Try Lggcr = 512, then Lgger =
1024, and so on until you can discern two spectrum lines.> Then reduce the value of Lggcr little by
little to get the smallest Lggcr that will work. Getting a value of Lggcr to the nearest 500 is sufficient.

As before, use zooming to examine the important regions of the spectrogram. Once you have two
spectrum lines, record the value of Lgpcr and determine whether the frequencies present in the spec-
trogram are correct. In addition, convert Lggcr to the section duration in seconds, Tsgcr.

Instructor Verification (separate page) ‘

2.1.3 Inverse Relationship: Section Length vs. Frequency Resolution

The shortest section length when you are able to discern the two spectrum lines was determined in the
previous section.

4Use plotspec instead of specgran in order to get a linear amplitude scale rather than logarithmic.
SUsually the window (section) length is chosen to be a power of two, because a special algorithm called the FFT is used in the
computation. The fastest FFT programs are those where the FFT length is a power of 2.
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(a) The shortest (window) section length of Lspcr samples has been converted into a (window) section
duration in seconds (via the sampling rate). Compare the inverse of this (window) section duration to
the frequency separation of the spectrum lines.

1
Ai=fol =2 =

SECT

If we believe that the inverse relationship between (window) section duration and frequency separation
is true, then we can calculate a constant C such that

C

TSECT

| f1— f2| = (10)

From your first experiment, determine C.

(b) Now change fx to 16 Hz and repeat the resolution experiment in Sect. 2.1.2(d). That is, find a section
length that will resolve the two frequency components which are now farther apart. Use the value of
C and (10) to predict the section length that you will need. Verify that this section length will work
correctly.
Note: The relationship is approximate, so the derived section length is not guaranteed to work. If that
happens, a small increase in Lggcr should make it work.

Instructor Verification (separate page)

2.2 Spectrogram for a Chirp with Negative Instantaneous Frequency

Use the code provided in the pre-Lab section as a starting point in order to write a MATLAB script or function
that will synthesize a “chirp” signal. Then use that M-file in this section.

(a) What happens when we make a signal that “chirps down” and the instantaneous frequency goes neg-
ative? Generate a chirp signal that starts at 2000 Hz when ¢ = 0's, and chirps down to —1000 Hz, at
t = 1.5s. Use f; = 8000 Hz. Determine the parameters needed in (4).

(b) Generate the chirp signal in MATLAB and make a spectrogram with Lggcr = 200 to verify that you
have the correct starting and ending frequencies. For Lggcr = 200, determine the section duration
Tskcr in secs.

(c) Will you hear negative frequency? Use a spectrogram that contains negative frequencies to explain
your answer. If possible listen to the signal and describe what you will hear; then explain in terms of
the two-sided spectrogram.

Instructor Verification (separate page)

2.2.1 Section Length in Chirp Spectrogram

When we have a signal whose frequency is not constant, we can study how the temporal features of the
spectrogram depend on the section length Lggcr. As we saw in the previous section, the section length
has to be short to capture the temporal changes in the signal. However, let’s see what happens with a long
section length.

(a) Generate the same signal as in Sect. 2.2, but make the spectrogram with Lggcr = 1600.

(b) When Lggcr = 1600, determine the section duration Tgpcr in Secs.
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(c) The spectrogram uses 50% overlapping and skipping (see Sect. 1.8). Based on Tsgcr, determine the
time locations where the spectrum is being computed. Relate these time locations to what you see in
the spectrogram.

‘ Instructor Verification (separate page) ‘

(d) Optional: Use the slope of the instantaneous frequency to determine how much the frequency changes
during one section. Calculate the frequency change from Tszcr and . In this spectrogram, the
changing frequency appears as rectangular bars that have a measurable width and height. The width
should be 0.5Tsgcr in secs. Compare the calculated frequency change to the vertical height of the
bars—are they different or equal?

2.3 Lab-HW: Matching Unknown Spectrograms

Now you are given a spectrogram in Fig. 1, and you must synthesize a signal that will match that time-
frequency plot. Explain and discuss your work.

1. Define a time signal x () whose spectrogram will match the given spectrogram. This signal definition
should be a simple mathematical formula.
Note: you might have to iterate with the following two steps to get a good approximation.

2. Generate samples of the signal over the appropriate time interval using fs = 4000 Hz.

3. Choose the section length in plotspec carefully so that your spectrogram is an excellent match.

2000

1500

1000

Freq (Hz)

500

Time (secs)

Figure 1: Spectrogram of unknown signal with f; = 4000 Hz. Section length to be determined. Horizontal
axis is time in seconds.

McClellan, Schafer, and Yoder, DSP First, 2e, ISBN 0-13-065562-7. 8 McClellan, Schafer and Yoder, Signal Processing First.
Prentice Hall, Upper Saddle River, NJ 07458. ©2015 Pearson Education, Inc. Prentice Hall, Upper Saddle River, New Jersey, 2003. @2003 Prentice Hall.



[ 11T, ey LT UL P

il

Lab: Spectrograms of AM and FM Signals
INSTRUCTOR VERIFICATION SHEET

Turn this page in to your lab grading TA before the end of your scheduled Lab time.

Name: LoginUserName: Date:

Part 2.1.2 Record the value of the section length Lggcr (in samples) and Tsper (in secs) when you can
discern two separate spectral lines for the beat note signal, using f = 4 Hz,.

LSECT =

TSECT =

Verified: Date/Time:

Part 2.1.3 Calculate the proportionality constant C for the inverse relationship: | f1 — f2| & C/ Tsgcr. Then
determine a new section length Lgsgcr for f = 16 Hz. Synthesize the signal and make its spectrogram with
the new section length Lgspcr. Then verify that the two spectrum lines are resolved.

C =

LSECT =

Verified: Date/Time:

Part 2.2 Write MATLAB code for synthesizing a linear-FM chirp whose instantaneous frequency goes neg-
ative. Also, display the rwo-sided spectrogram that includes the negative frequency region, as well as the
one-sided spectrogram that has positive frequency components only. Determine the section duration Tsgcr
in secs.

TSECT=

Verified: Date/Time:

Part 2.2.1 Spectrogram of Chirp with long-duration section, Lsgcr = 1600. Explain features in the spectro-
gram, e.g., location of sections along the time axis and duration of sections.

TSECT =

Section times (centers) =

Verified: Date/Time:
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Lab: Spectrograms of AM and FM Signals
LAB HOMEWORK QUESTION

Turn this page in to your lab grading TA at the very beginning of your next scheduled Lab time.

Name: LoginUserName: Date:

Part 2.3
1. Match the unknown spectrogram. Give the mathematical formula for the signal
2. Include the MATLAB code for generating the signal.

3. Choose a section length to get the desired spectrogram. Include a plot of the spectrogram when you
hand in your Lab-HW.
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