
DSP First
Lab 4a: Synthesis of Sinusoidal Signals—Speech Synthesis

FORMAL Lab Report:
You must write a formal lab report that describes your system for speech
synthesis (Section 4). This lab report will be worth 150 points.

You should read the Pre-Lab section of the lab and do all the exercises in
the Pre-Lab section before your assigned lab time.
The Warm-up section of each lab must be completed during your assigned Lab
time and the steps marked Instructor Verification must
also be signed off during the lab time by one of the
laboratory instructors.
After completing the warm-up section, turn
in the verification sheet to your TA.

1 Introduction

This lab includes a project on speech synthesis with sinusoids.
The speech synthesis will be done with sinusoidal waveforms of the
form

x(t) =
∑
k

Ak cos(ωkt+ φk)

(1)

where each sinusoid will have short duration on the order of the
pitch period of the speaker.
One objective of this lab is to study how many sinusoids are
needed to create a sentence that sounds good.
A secondary objective of the lab is the
challenge of putting together the short duration sinusoids without
introducing artifacts at the transition times.
Finally, much of the understanding needed for this lab involves
the spectral representation of signals—a topic that
underlies this entire course.

2 Pre-Lab

In this lab, the periodic waveforms and speech signals will be created with
the intention of playing them out through a speaker.
Therefore, it is necessary to take into account the fact that a
conversion is needed from the digital samples, which are numbers stored in the
computer memory to the actual voltage waveform that will be amplified for the
speakers.

McClellan, Schafer, and Yoder, Signal Processing First, ISBN 0-13-065562-7.
Prentice Hall, Upper Saddle River, NJ 07458. c©2012 Pearson Education, Inc.

1

2.1 D-to-A Conversion

Most computers have a built-in analog-to-digital (A-to-D) converter and a
digital-to-analog (D-to-A) converter (usually on the sound card). These
hardware systems are physical realizations of the idealized concepts of C-to-D
and D-to-C converters respectively, but for purposes of this lab we will assume
that the hardware A/D and D/A are perfect realizations.
The digital-to-analog conversion process has a number of aspects, but
in its simplest form the only thing we need to worry about in this
lab is that the time spacing (Ts) between the signal samples
must correspond to the rate of the D-to-A hardware that is being
used.
From MATLAB, the sound output is done by the soundsc(xx,fs)
function which does support a variable D-to-A sampling rate if the hardware on
the machine has such capability.
A convenient choice for the D-to-A conversion rate is 11025
samples per second,1 so Ts = 1/11025 seconds; another
common choice is 8000 samples/sec.
Both of these rates satisfy the requirement of sampling fast
enough as explained in the next section.
In fact, human speech has relatively low frequencies, so an even
lower sampling rate could be used.
If you are using soundsc(), the vector xx will be scaled
automatically for the D-to-A converter, but if you are using sound.m,
you must scale the vector xx so that it lies between ±1. Consult
help sound.

(a) The ideal C-to-D converter is, in effect, being implemented whenever we take

samples of a continuous-time formula, e.g., x(t) at t = tn.

We do this in MATLAB by first making a vector of times, and then evaluating the

formula for the continuous-time signal at the sample times,

i.e., x[n] = x(nTs) if tn = nTs.

This assumes perfect knowledge of the input signal, but we have already been

doing it this way in previous labs.

To begin, create a vector x1 of samples of a

sinusoidal signal with A1 = 100, ω1 = 2π(800), and φ1 = −π/3.

Use a sampling rate of 11025 samples/second, and compute a total number of

samples equivalent to a time duration of 0.5 seconds.

You may find it helpful to recall that a MATLAB statement such as

tt=(0:0.01:3); would create a vector of numbers from 0 through 3 with

increments of 0.01.

Therefore, it is only necessary to determine the time increment needed to

obtain 11025 samples in one second.

Use soundsc() to play the resulting vector through the D-to-A converter
1This sampling rate is one quarter of the rate

(44,100 Hz) used in audio CD players.

McClellan, Schafer, and Yoder, Signal Processing First, ISBN 0-13-065562-7.
Prentice Hall, Upper Saddle River, NJ 07458. c©2012 Pearson Education, Inc.

2

of the your computer, assuming that the hardware can support the fs = 11025

Hz rate.

Listen to the output.

(b) Now create another vector x2 of samples of a second sinusoidal signal

(0.8 secs. in duration) for the case A2 = 80, ω2 = 2π(1200), and

φ2 = +π/4. Listen to the signal reconstructed from these samples. How

does its sound compare to the signal in part (a)?

(c) Concatenate the two signals x1 and x2

from the previous parts and put a short duration

of 0.1 seconds of silence in between.

You should be able to concatenate by using a statement something like:

xx = [x1, zeros(1,N), x2];

assuming that both x1 and x2 are row

vectors. Determine the correct value of N to

make 0.1 seconds of silence. Listen to this new signal to verify

that it is correct.

(d) To verify that the concatenation operation was done correctly in the previous part,

make the following plot:

tt = (1/11025)*(1:length(xx)); plot(tt, xx);

This will plot a huge number of points, but it will

show the “envelope” of the signal and verify that the amplitude

changes from 100 to zero and then to 80 at the correct times.

Notice that the time vector tt was created to have

exactly the same length as the signal vector xx.

(e) Now send the vector xx to the D-to-A converter again,

but change the sampling rate parameter in soundsc(xx, fs) to 22050

samples/second. Do not recompute the samples in xx, just tell the

D-to-A converter that the sampling rate is 22050 samples/second. Describe how

the duration and pitch of the signal were affected. Explain.

McClellan, Schafer, and Yoder, Signal Processing First, ISBN 0-13-065562-7.
Prentice Hall, Upper Saddle River, NJ 07458. c©2012 Pearson Education, Inc.

3

2.2 Debugging Skills

Testing and debugging code is a big part of any programming job, as
you know if you’ve been staying up late on the first few labs.
Almost any modern programming environment provides a symbolic debugger
so that break-points can be set and variables examined in the
middle of program execution. Nonetheless, many programmers still
insist on using the old-fashioned method of inserting print
statements in the middle of their code (or the MATLAB equivalent,
leaving off a few semi-colons). This is akin to riding a tricycle
to commute around Atlanta.
There are two ways to use debugging tools in MATLAB: via buttons in the edit window
or via the command line. For help on the edit-window debugging
features, access the menu Help->Using the M-File Editor
which will pop up a browser window at the help page for editing
and debugging. For a summary of the command-line debugging tools,
try help debug. Here is part of what you’ll see:

dbstop - Set breakpoint.

dbclear - Remove breakpoint.

dbcont - Resume execution.

dbdown - Change local workspace context.

dbmex - Enable MEX-file debugging.

dbstack - List who called whom.

dbstatus - List all breakpoints.

dbstep - Execute one or more lines.

dbtype - List M-file with line numbers.

dbup - Change local workspace context.

dbquit - Quit debug mode.

When a breakpoint is hit, MATLAB goes into debug mode, the debugger

window becomes active, and the prompt changes to a K>. Any MATLAB

command is allowed at the prompt.

To resume M-file function execution, use DBCONT or DBSTEP.

To exit from the debugger use DBQUIT.

One of the most useful modes of the debugger causes the program to jump into

McClellan, Schafer, and Yoder, Signal Processing First, ISBN 0-13-065562-7.
Prentice Hall, Upper Saddle River, NJ 07458. c©2012 Pearson Education, Inc.

4

“debug mode” whenever an error occurs. This mode can be invoked by typing:

dbstop if error

With this mode active, you can snoop around inside a function and examine local
variables that probably caused the error. You can also choose this option from
the debugging menu in the MATLAB editor.
It’s sort of like an
automatic call to 911 when you’ve gotten into an accident. Try
dbstop help
dbstop for more information.
Download the file coscos.m and use the debugger to find the error(s) in
the function. Call the function with the test case:
coscos(2,3,20,1)[xn,tn] =
coscos(2,3,20,1). Use the debugger to:

1. Set a breakpoint to stop execution when an error

occurs and jump into ‘‘Keyboard’’ mode,

2. display the contents of important vectors while stopped,

3. determine the size of all vectors by using either the

size() function or the whos command.

4. and, lastly, modify variables while in the ‘‘Keyboard’’ mode of

the debugger.

function [xx,tt] = coscos(f1, f2, fs, dur)

% COSCOS multiply two sinusoids

%

t1 = 0:(1/fs):dur;

t2 = 0:(1/f2):dur;

cos1 = cos(2*pi*f1*t1);

cos2 = cos(2*pi*f2*t2);

xx = cos1 .* cos2;

tt = t1;

McClellan, Schafer, and Yoder, Signal Processing First, ISBN 0-13-065562-7.
Prentice Hall, Upper Saddle River, NJ 07458. c©2012 Pearson Education, Inc.

5

2.3 Synthesizing a Signal from Sections

In speech synthesis, we will create the overall signal one
section at a time. One way to do this is to add together a number
of short signals; a mathematical notation for adding short signals
that are time-shifted is given by

x(t) =
K−1∑
k=0

xk(t− kT)

where each signal xk(t) is shifted by the amount T.
If each signal has a duration of T, then the shifted signals
xk(t−kT) do not overlap, and then we would actually be creating x(t) by
concatenating the sections xk(t) one after the other, so the
total duration of x(t) would be KT.
Consider the case where

xk(t) = cos(2π(411 + 100k)t)
for 0≤ t < T

In order to concatenate six sinusoids each with a duration of T = 0.3
secs, run the MATLAB code below to make the signal which will
have a duration of 1.8 s.
Then the changing frequency content (vs. time) of the synthesized signal
can be verified by displaying a spectrogram.

fs = 8000;

tt = 0:1/fs:0.3;

M = 6;

L = length(tt);

xx = zeros(1,M*L);

for k = 1:M

jkl = (k-1)*L + (1:L);

xx(jkl) = xx(jkl) + cos(2*pi*(411+100*k)*tt);

end

One problem with this synthesis by concatenation is that the
transition from one section to the next might not be smooth. Examine
a plot of x(t) to see the jumps at multiples of T.

McClellan, Schafer, and Yoder, Signal Processing First, ISBN 0-13-065562-7.
Prentice Hall, Upper Saddle River, NJ 07458. c©2012 Pearson Education, Inc.

6

3 Warm-up

We can join signal segments together smoothly if we use
‘‘windowing.’’

3.1 Triangular Window

Sometimes it is necessary to modify the values of a signal to
taper the ends. This can be accomplished with what is called a window

function.
One of the simplest window functions is the
windowtriangular
window defined2 for duration T as

w∆(t) =


t/T 0 ≤ t < T

2− t/T T ≤ t ≤ 2T

0 elsewhere
(2)

(a) Draw a sketch (by hand) of w∆(t) for the case T = 50 millisec.

(b) Write a MATLAB function that will generate (samples of) a triangular
window.

Since sampling at t = 0 or t = 2T would give a zero value,

generate the time vector at t = 0.5/fs, 1.5/fs, 2.5/fs,

....Uselinspaceorthecolonoperatortogenerate

the values w∆(t) that make up the lines on the sides of the triangle.

Use the following comments as a template:

function [win,tt] = triwin(T, fs)

% TRIWIN make a triangular window

%

% T, so that 2T = duration of the window

% fs = sampling rate

% win = values of the window at the times in the tt vector

2The subscript ∆ in w∆(t) is
meant to convey the shape of the triangular window.

McClellan, Schafer, and Yoder, Signal Processing First, ISBN 0-13-065562-7.
Prentice Hall, Upper Saddle River, NJ 07458. c©2012 Pearson Education, Inc.

7

(c) Test your triwin function by making a MATLAB plot of a triangular

window for the case T = 50 millisec, using a sampling rate of 8000

samples/sec. How long is the window in number of samples?

Instructor Verification (separate page)

3.2 Overlapped Signal Segments

In Section 2.3, you created a long signal by concatenating short
segments. A second method of forming the long
signal is to use overlapped short segments. Here we will study how to

extract
such overlapped segments from a long signal.
Suppose that we start with a long signal y(t) and we extract
short segments from y(t) in the following manner:

yk(t) =

{
y(t+ kT) 0 ≤ t < 2T

0 elsewhere
(3)

In other words, the kth segment, yk(t), starts at t = kT and ends at
t = (k + 2)T. Furthermore, successive signal segments, such as yk(t)
and yk+1(t), have 50% overlap.

(a) Number of Segments:

If the duration of y(t) is 1.5 sec. and T = 50 msec., how

many segments would be produced by overlap method in

(3)?

(b) Segment Length:

If we are using MATLAB to represent the signal y(t), then we

would sample y(t) at a rate fs to produce a vector

containing the samples, i.e., y[n] = y(n/fs). For

example, if fs = 8000 samples/sec and the duration of

y(t) is 1.5 sec., then the entire ‘‘y’’ vector would contain 12000

samples. How many samples are contained in each segment

created by the overlap method in

(3) if T = 50 msecs. and fs = 8000

Hz?

(c) Write a short MATLAB function that will perform the

segmentation according to (3). The function’s

output should be a matrix whose column length is the number of

samples in one segment, and whose row length is the number of

McClellan, Schafer, and Yoder, Signal Processing First, ISBN 0-13-065562-7.
Prentice Hall, Upper Saddle River, NJ 07458. c©2012 Pearson Education, Inc.

8

segments. Here is a template:

function yseg = overlap50(yy, T, fs)

% OVERLAP50 Fill matrix columns with signal segments

% overlapped by 50%

% yy = (long) input signal

% T, so that 2T = duration of the window

% fs = sampling rate

% yseg = matrix containing segmented signal

%

L = round(fs*T); L2 = round(fs*T*2);

Ly = length(yy);

n2 = L2;

k=1;

while(n2<Ly)

n1 = ???? <----- FILL IN CODE for n1 and n2

ychop = yy(n1:n2);

yseg(:,k) = ychop(:); %--make sure it’s a column

k = k+1;

n2 = n2 + L;

end

(d) Test your function for T = 25 msec. and fs = 8000 samples/sec.

on the following signal:

yy = cos(40*pi*(0:(1/8000):1.5));

Explain why every other column of the yseg matrix is

identical for this test case. Use the MATLAB plotting

function strips(yseg(:,1:6)) to plot the first

McClellan, Schafer, and Yoder, Signal Processing First, ISBN 0-13-065562-7.
Prentice Hall, Upper Saddle River, NJ 07458. c©2012 Pearson Education, Inc.

9

six columns (as rows in the plot).

Instructor Verification (separate page)

3.3 Overlapped Windows

The triangular window has the following interesting property:
when you add shifted triangular windows, the
result is one, except for the ends. This property can be stated mathematically

as

K−1∑
k=0

w∆(t− kT) =
t/T 0 ≤ t < T

1 T ≤ t ≤ KT

K + 1− t/T KT < t < (K + 1)T

0 (K + 1)T ≤ t
(4)

The important line in this equation is the second one which says
that the sum equals one in the intervals where the triangles
overlap, see Fig. 3.3.

must be even for this property to hold on the time-sampled window.

Figure 1: Sum of shifted and overlapped triangular windows. The
window length
must be even for this property to hold on the time-sampled window.

(a) Complete the code fragment below that will add together six shifted

triangular windows. It should produce a plot something like

Fig. 3.3.

McClellan, Schafer, and Yoder, Signal Processing First, ISBN 0-13-065562-7.
Prentice Hall, Upper Saddle River, NJ 07458. c©2012 Pearson Education, Inc.

10

win = triwin(0.05, 8000);

winsix = zeros(1,4*length(win));

n1 = 1;

Lw = length(win);

plot(winsix);

for k = 1:5

n2 = ????? <==== add code here

winsix(n1:n2) = winsix(n1:n2) + win; %??? <==== FILL in n1 & n2

hold on

plot(winsix, ’-r’)

plot(n1:n2,win,’--b’) %%<==== same range as above

hold off

pause

n1 = n1 + ??????????????? <==== add code here

end

Instructor Verification (separate page)

3.4 Add Overlapped and Windowed Segments

We can use the overlap property of the triangular window
(eq. (4) in Section 3.3) to add back
together the segments from the 50% overlap method of eq. (3).
First of all, we would apply the
triangular window to each segment, i.e., w∆(t)yk(t),
and then we would add all of the segments together
the correct shift.with
the correct shift.

K∑
k=0

w∆(t− kT)yk(t− kT)

The result will be equal to y(t) except for the regions at
the ends.

(a) Here is a code fragment that does the windowing:

McClellan, Schafer, and Yoder, Signal Processing First, ISBN 0-13-065562-7.
Prentice Hall, Upper Saddle River, NJ 07458. c©2012 Pearson Education, Inc.

11

% yseg = matrix containing segmented signal

for k = 1:size(yseg,2)

ysegwin(:,k) = yseg(:,k).*triwin(size(yseg,1)/(2*fs),fs)’;

end

(b) Write a for loop that will add the windowed segments back

together to form yy over most of the time interval,

except for the first and last T secs. Refer to

Section 3.4(a) for sample

code.

(c) Now test the entire process with the signal

xx = cos(2*pi*440*tt);

with a segment duration of 10 millisec., 50% overlap, and

fs = 8000 Hz.

Perform the three processing steps as : (1) break

it into segments (refer to Section 3.2(c)),

(2) window each segment with a triangular

window (part (a) above), and (3) add the segments back together (part
(b) above).

Show that the result is a 440-Hz cosine, except for the first 5

millisec. and the last 5 millisec.

4 Lab: Synthesis of Speech with Sinusoids

Speech signals are often ‘‘quasi-periodic’’ especially in vowel
regions. Thus it is reasonable to expect that speech utterances
might be synthesized from a few sinusoids. On the other hand, fricatives
such as /s/ and /sh/ sounds are not sinusoidal, so there are
probably regions where the sinusoidal synthesis would do a poor
job. Fortunately, the intelligibility of an utterance
depends mostly on the vowels and less on the fricatives.
Speech can be synthesized by adding together a bunch of
short-duration sinusoids. Thus, an important factor in the
sinusoidal synthesis of speech is the

McClellan, Schafer, and Yoder, Signal Processing First, ISBN 0-13-065562-7.
Prentice Hall, Upper Saddle River, NJ 07458. c©2012 Pearson Education, Inc.

12

frame length, which is the time interval during which one
set of sinusoids is used. From frame to frame the sinusoids can
change. In speech, there are two time durations that would be
relevant to picking the frame length:
the speaker’s pitch period and the articulation rate of humans in
general. The pitch period varies with individuals and
with sex---adult males generally have a lower pitch than adult
females and hence the pitch period is longer for an adult male
speaker.
The articulation rate is a measure or how fast a speaker
can form different sounds and is dictated by how fast the
muscles in the vocal tract can move to form different sounds.
For example, try saying the alphabet (A-B-C-D-E-F) as fast as
you can. It is generally accepted that the individual sounds
can change no faster than every 40--50 millisec. Taken together
the pitch frequency and articulation rate determine how often we
should try changing the sinusoids for the speech synthesis.
We will use a frame length around 10 millisec. which is close to
the pitch period of most speakers.
In the process of actually synthesizing the speech, keep in mind
the following general ideas:

(a) Determine a sampling frequency that will be used to play out the

sound through the D-to-A system of the computer.

This will dictate the time Ts = 1/fs between samples of the sinusoids.

(b) The total time duration needed for each sinusoid is fixed by the frame

length.

(c) An analysis function sigAnalyze is provided to extract sinusoidal

components from a signal. It is given as ‘‘p-code’’, so it can

be run like an M-file even though the actual code cannot be

viewed.

(d) Synthesize the speech waveform as a combination of overlapped (or

concatenated) sinusoids, and play it out through the computer’s built-in
speaker

or headphones using soundsc().

(e) Include a spectrogram image of a portion of each synthesized utterance---probably

about 1 or 2 secs---so that you can illustrate the fact that you

have used the correct number of sinusoids. In effect, you can use

the spectrogram to confirm the correctness of your synthesis. The

window length in the spectrogram might have to be adjusted, but

start with an initial value of 256 for the window length in

specgram() or plotspec(), and then increase it.

Note: by default, the spectrogram M-files will scale the

McClellan, Schafer, and Yoder, Signal Processing First, ISBN 0-13-065562-7.
Prentice Hall, Upper Saddle River, NJ 07458. c©2012 Pearson Education, Inc.

13

frequency axis to run from zero to half the sampling frequency, so

it might be useful to ‘‘zoom in’’ on the region where the

frequencies are. Consult help zoom, or use the zoom tool

in MATLAB figure windows.

Data Format for Speech Signals

Any speech signal can be encoded with the MATLAB function
sigAnalyze which has the following calling
format:

function [Camps,Freqs] = sigAnalyze(xx,fs,numSines,frameDur,overlap)

%SIGANALYZE produce sinusoidal components per frame for a signal

%

% usage: [Camps,Freqs] = sigAnalyze(xx,fs,numSines,frameDur,overlap)

%

% xx = input signal vector

% fs = sampling rate (samples per sec)

% numSines = # of sinusoids to find (only the positive freqs are counted)

% frameDur = duration of each frame in secs.

% overlap = frame overlap in secs. (must be less than frameDur)

% Camps = array of complex amps (number of frames by numSines)

% Freqs = array of freqs, one for each complex amp

The output of sigAnalyze gives the
frequencies and complex amplitudes needed in each frame; the
inputs are the analysis parameters such as frame duration,
frame overlap, and sampling rate.
In the complex-amplitude and frequency arrays, the
value of Freqs(j,n) is the nth

frequency (in Hz) in the jth frame of the signal; the
corresponding complex amplitude is Camps(j,n).
There are at least three ways to get a speech signal into MATLAB, depending

on the format:

1. Use the wavread function to load the speech data

in from a WAV file.

For example, [xx,fs]=wavread(’catsdogs.wav’);.

McClellan, Schafer, and Yoder, Signal Processing First, ISBN 0-13-065562-7.
Prentice Hall, Upper Saddle River, NJ 07458. c©2012 Pearson Education, Inc.

14

2. Use the load command to load in data from a MAT file, which

is MATLAB’s binary format.

For example, load s7.mat

3. Use audiorecorder to record directly from a microphone into MATLAB.

In addition, you can write a WAV file from MATLAB with the wavwrite function.
Use help wavwrite for more info, and be careful that you scale the
signal’s amplitude to be between ±1.

4.1 Synthesis

In this lab, you will use the given function sigAnalyze
to create a set of complex amplitudes and frequencies
of sinusoids for each small frame of various signals, and then write a

function to
re-synthesize the speech signal from a limited number of sinusoidal
components.

(a) Write a sigSynth function that will take the outputs

from sigAnalyze and produce an output signal in which the frames

can be overlapped. You can use

a function like syn sin written in a previous

lab to sum the complex exponentials within one frame.

However, if you wrote syn sin with a time increment that depends on the

highest frequency, then you will have modify it so that the

time increment depends on the sampling rate, and the sampling rate

should become one of the inputs.

Note: If the signal was analyzed with an overlap in

sigAnalyze, then you must use a segmenting strategy like

overlap50 inside of sigSynth.

(b) Apply sigAnalyze to a recording3 of your own

voice which is sampled at fs = 8000 Hz. Use a frame duration of 10ms,

a 5ms overlap, and extract 8 sinusoidal frequency components

(per frame).4

One possible utterance is the vowels, i.e., ‘‘A-E-I-O-U’’.

3MATLAB (version 7) has a function called
audiorecorder that can acquire sound from a microphone via a sound card.
Consult the help on audiorecorder and read the examples.
Make sure to save the data as “double” instead of “int16.”

4The file catdogs.wav is also
available, but you
are not required to process it for your lab report.

McClellan, Schafer, and Yoder, Signal Processing First, ISBN 0-13-065562-7.
Prentice Hall, Upper Saddle River, NJ 07458. c©2012 Pearson Education, Inc.

15

(c) Synthesize the speech using all 8 frequencies components obtained

in the analysis of part (b).

Compare spectrograms of the original and the resynthesized

signal, and comment on the differences that you hear in the sounds.

(d) Now, extract 4 frequency components and synthesize the speech (these
will be

the four largest ones).

Compare spectrograms of the original and the resynthesized

signal, and comment on the differences that you hear in the sounds.

4.2 Synthesize Music

The per-frame sinusoidal synthesis should work on signals other
than speech, e.g., music, singing, etc. However, since the frame
duration parameter depends on the type of signal, it is unlikely
that the value picked for speech signals will be the best choice
for a signal like music.

(a) Apply the sigAnalysis and sigSynth functions to

the recording of the piano piece Für Elise which can be

found in the file FurElise.wav.

Use the same parameters as before: a frame duration of 10 ms, and

overlap of 5 ms, and keep 8 sinusoidal components from the

analysis.

Compare spectrograms of the original and the resynthesized

signal, and comment on the differences that you hear in the sounds.

(b) Now, try to get a better result by changing the number of sinusoids.
Determine

how many are needed to get a result that sounds very close to the

original. There is probably not one answer for this number, because
it depends on

your individual perception of the distortions in the

resynthesized signal.

(c) Now, try to improve the result by changing the frame duration

while also reducing the number of sinusoids from the amount found in
the previous

part. For example, consider the possibility that

if you make the frame duration shorter, then you might be able to

reduce the number of sinusoids.

McClellan, Schafer, and Yoder, Signal Processing First, ISBN 0-13-065562-7.
Prentice Hall, Upper Saddle River, NJ 07458. c©2012 Pearson Education, Inc.

16

4.3 Mystery Signal

One more data set, sigMystery.mat, is included as a challenge for synthesis.
This is a .MAT file containing the arrays Camps and
Freqs extracted from a speech signal with fs = 8000 Hz, a
frame duration of 8 msec., and 50% overlap.
You should run your synthesis algorithm with the
objective of trying to understand what is being uttered.

4.4 Testing

Bring your working synthesis program to the lab when your report is due.
A couple of

test signals will be run to verify that you have a successful synthesis
program.

The format of the test signals will the same as
sigMystery.mat, so make sure that your program can handle
such inputs quickly and easily.
In addition, you will be asked some questions about the inner workings

of
your MATLAB synthesis function(s).

4.5 Lab Report Suggestions

Your lab report should include
spectrograms of the original and the synthesized signals.
The write-up should point out features in the spectrograms
that indicate the differences between
the eight-sinusoid and four-sinusoid cases for your voice. In
addition, you should make subplots of the original signal
and the resynthesized signal versus time, and identify where they
are different by marking such features on the plots. The comparison will

be easier
if you scale both the original and the resynthesized signal
to have the a maximum value of one.

McClellan, Schafer, and Yoder, Signal Processing First, ISBN 0-13-065562-7.
Prentice Hall, Upper Saddle River, NJ 07458. c©2012 Pearson Education, Inc.

17

Instructor Verification Sheet Lab 4
Instructor Verification Sheet

For each verification, be prepared to explain your answer and
respond to other related questions that the lab TA’s or professors might

ask. Turn this page in at the end of your lab period.

Name: Date of Lab:

Part 3.1 Make a triangular window M-file
triwin.m:

Verified: Date/Time:

Part 3.2 Test overlapped signal segments:

Verified: Date/Time:

Part 3.3 Overlapped triangular windows:

Verified: Date/Time:

Criteria Speech Evaluation Criteria

Are the sentences intelligible? All Most Only one

Does the music (Fúr Elise) sound good?

Mystery sentence correct?

Test sentence correct?

Overall Impression:

Good:

McClellan, Schafer, and Yoder, Signal Processing First, ISBN 0-13-065562-7.
Prentice Hall, Upper Saddle River, NJ 07458. c©2012 Pearson Education, Inc.

18

Good sound quality. Works well for both 4 and 8 sinusoids.

OK:

Basic sinusoidal synthesis, but not smooth at the boundaries.

Possible problem with windowing.

Poor:

Synthesis does not work properly. Poor sound quality.

McClellan, Schafer, and Yoder, Signal Processing First, ISBN 0-13-065562-7.
Prentice Hall, Upper Saddle River, NJ 07458. c©2012 Pearson Education, Inc.

19

