
DSP First 
Lab 04: Synthesis of Sinusoidal Signals - Music Synthesis 

 
Pre-Lab and Warm-Up: You should read at least the Pre-Lab and Warm-up sections of this lab 
assignment and go over all exercises in the Pre-Lab section before going to your assigned lab 
session. 

Verification: The Warm-up section of each lab must be completed during your assigned Lab 
time and the steps marked Instructor Verification must also be signed off during the lab time. 
One of the laboratory instructors must verify the appropriate steps by signing on the Instructor 
Verification line. When you have completed a step that requires verification, simply 
demonstrate the step to the TA or instructor. Turn in the completed verification sheet to your TA 
when you leave the lab. 

Lab Report: It is only necessary to turn in a report on Section 4 with graphs and explanations. 
You are asked to label the axes of your plots and include a title for every plot. In order to keep 
track of plots, include your plot inlined1 within your report. If you are unsure about what is 
expected, ask the TA who will grade your report. 

1 Introduction 
This lab includes a project on music synthesis with sinusoids.  The piece, Fugue #2 for the Well-
Tempered Clavier by Bach2 has been selected for doing the synthesis program.  The project 
requires an extensive programming effort and should be documented with a complete formal lab 
report.  A good report should include the following items: a cover sheet, commented LabVIEW 
code, explanations of your approach, conclusions and any additional tweaks that you 
implemented for the synthesis.  Since the project must be evaluated by listening to the quality of 
the synthesized song, the criteria for judging a good song are given at the end of this lab 
description.  If you would like to try other songs, the DSP First CD-ROM includes information 
about alternative tunes: Minuet in G, Fur Elise, Beethoven’s Fifth, Jesu, Joy of Man’s Desiring 
and Twinkle, Twinkle, Little Star.  The music synthesis will be done with sinusoidal waveforms 
of the form  

  (1)  ∑ +=
k

kkk tAtx )cos()( φω

so it will be necessary to establish the connection between musical notes, their frequencies, and 
sinusoids.  A secondary objective of the lab is the challenge of trying to add other features to the 
synthesis in order to improve the subjective quality for listening.  Students who take this 
challenge will be motivated to learn more about the spectral representation of signals ― a topic 
that underlies this entire course.  

                                                 
1 Remember, if you want to include a waveform plot, right-click and select Data Operations»Export Simplified 
Image…. 
2See http://www.naxos.com/mainsite/default.asp?pn=Composers&char=B&ComposerID=52.  

may Page 1 11/30/2005 

http://www.naxos.com/mainsite/default.asp?pn=Composers&char=B&ComposerID=52


2 Pre-Lab 
In this lab, the periodic waveforms and music signals will be created with the intention of 
playing them out through a speaker (or headphones).  Therefore, it is necessary to take into 
account the fact that a conversion is needed from the digital samples, which are numbers stored 
in the computer memory to the actual voltage waveform that will be amplified for the speakers.  

2.1 LabVIEW Review 
You learned several LabVIEW techniques during the last lab.  Here is a list of some of them: 
How to use probes. 

• How to convert a VI to a sub VI 
o Adding terminals to a sub VI 
o Adding a sub VI to a block diagram 

• How to use a for loop 
o Iterating over an array 
o Using N to specify the number of iterations 
o Using i 
o Using shift registers to carry values from one iteration to another. 

 

2.2 Theory of Sampling 
Chapter 4 treats sampling in detail, but this lab is usually done prior to lectures on sampling, so 
we provide a quick summary of essential facts here.  The idealized process of sampling a signal 
and the subsequent reconstruction of the signal from its samples is depicted in Figure 1. 

 
Figure 1: Sampling and reconstruction of a continuous-time Signal. 

This figure shows a continuous-time input signal x(t), which is sampled by the continuous-to-
discrete (C-to-D) converter to produce a sequence of samples x[n]=x(nTs), where n is the integer 
sample index and Ts is the sampling period. The sampling rate is fs=1/Ts where the units are 
samples per second.  As described in Chapter 4 of the text, the ideal discrete-to-continuous (D-
to-C) converter takes the input samples and interpolates a smooth curve between them.  The 
Sampling Theorem tells us that if the input signal x(t) is a sum of sine waves, then the output y(t) 
will be equal to the input x(t) if the sampling rate is more than twice the highest frequency fmax in 
the input, i.e., fs > 2 fmax.  In other words, if we sample fast enough then there will be no 
problems synthesizing the continuous audio signals from x[n].  

2.3 D-to-A Conversion 
Most computers have a built-in analog-to-digital (A-to-D) converter and a digital-to-analog (D-
to-A) converter (usually on the sound card).  These hardware systems are physical realizations of 
the idealized concepts of C-to-D and D-to-C converters respectively, but for purposes of this lab 
we will assume that the hardware A/D and D/A are perfect realizations.  

 
x(t)x(t) 

C-to-D 
Converter 

 
x[n]=x(nTs) y(t) 

D-to-C 
Converter 

may Page 2 11/30/2005 



The digital-to-analog conversion process has a number of aspects, but in its simplest form the 
only thing we need to worry about at this point is that the time spacing (Ts) between the signal 
samples must correspond to the rate of the D-to-A hardware that is being used.  From LabVIEW, 
the sound output is done by the soundcs VI or the tripleDisplay VI which both support a 
variable D-to-A sampling rate if the hardware on the machine has such capability.  A convenient 
choice for the D-to-A conversion rate is 11025 samples per second3, so Ts = 1/11025 seconds; 
another common choice is 8000 samples/sec.  Both of these rates satisfy the requirement of 
sampling fast enough as explained in the next section. In fact, most piano notes have relatively 
low frequencies, so an even lower sampling rate could be used.  If you are using soundcs or 
tripleDisplay, the input will be scaled automatically for the D-to-A converter.  
 

a) The ideal C-to-D converter is, in effect, being implemented whenever we take 
samples of a continuous-time formula, e.g., x(t) at t = tn.  This is done for us in 
LabVIEW by the Function Generator VI.  It first makes a vector of times, and then 
evaluates the formula for the continuous-time signal at the sample times, i.e., x[n] = 
x(nTs) if tn = nTs.  This assumes perfect knowledge of the input signal, but we have 
already been doing it this way in previous labs. To begin, create a vector x1 of 
samples of a sinusoidal signal with A1=100, ω1=2π(800), and φ1=-π/3.  Use a 
sampling rate of 11025 samples/second, and compute a total number of samples 
equivalent to a time duration of 0.5 seconds.  You may find it helpful to recall that in 
LabVIEW the sampling info input lets you set the sampling rate and number of 
samples. 

  
In the left diagram the sampling rate is set to 11025 and there are 5000 samples.  The 
right diagram shows how to use a Bundle4 to access the sampling rate and number of 
samples separately.  You need to figure out how to calculate the number of samples 
given fs and dur. You should use the sin_syn function from a previous lab for 
this part.  Use tripleDisplay to look at and play the resulting vector through the D-to-
A converter of the your computer, assuming that the hardware can support the fs = 
11025 Hz rate.  Listen to the output. 

b) Now create another vector x2 of samples of a second sinusoidal signal (0.8 secs. in 
duration) for the case A2=80, ω2=2π(1200), and φ2=+π/4.  Listen to the signal 
reconstructed from these samples.  How does its sound compare to the signal in part 
(a)? 

c) Concatenate the two signals x1 and x2 with a short duration of 0.1 seconds of 
silence in between.  You should be able to use something like:  

                                                 
3 This sampling rate is one quarter of the rate (44,100 Hz) used in audio CD players. 
4 Hint:  right-click the background of the block diagram and then click Search.  Type Bundle to find it. 

may Page 3 11/30/2005 



 
where the right-most two blocks are Append Waveforms VIs5.  Note the middle 
function generator has amplitude of 0.  Determine the correct value of dur to make 
0.1 seconds of silence. Listen to this new signal to verify that it is correct. 

d) To verify that the concatenation operation was done correctly in the previous part, 
attach a tripleDisplay.  This will plot a huge number of points, but it will show the 
“envelope” of the signal and verify that the amplitude changes from 100 to zero and 
then to 80 at the correct times. 

2.4 Debugging Skills 
Testing and debugging code is a big part of any programming job, as you know if you have been 
staying up late on the first labs.  Almost any modern programming environment provides a 
debugger so that break-points can be set and variables examined in the middle of program 
execution.  Of course, many programmers insist on using the old-fashioned method of inserting 
print statements in the middle of their code (which is rather hard in a graphical language like 
LabVIEW).  This is akin to riding a tricycle to commute around Atlanta.  
Do the exercise in the Debugging folder to learn some simple, yet powerful techniques. 

2.5 Piano Keyboard 
Section 4 of this lab consists of synthesizing the notes of a well known piece of music.6  Since 
these signals require sinusoidal tones to represent piano notes, a quick introduction to the 
frequency layout of the piano keyboard is needed.  On a piano (Figure 2), the keyboard is 
divided into octaves--the notes in one octave being twice the frequency of the notes in the next 

                                                 
5 You can find this VI by right-clicking on the background of the block diagram view and selecting Search.   

may Page 4 11/30/2005 



lower octave. 

 
Figure 2 Layout of a piano keyboard. Key numbers are shaded. The notation C4 means the C-key in the 
fourth octave. 
 
For example, the reference note is the A above middle-C which is usually called A-440 (or A4) 
because its frequency is 440 Hz. (In this lab, we are using the number 40 to represent middle C. 
This is somewhat arbitary; for instance, the Musical Instrument Digital Interface (MIDI) 
standard represents middle C with the number 60).  Each octave contains 12 notes (5 black keys 
and 7 white) and the ratio between the frequencies of the notes is constant between successive 
notes.  As a result, this ratio must be 21/12.  Since middle C is 9 keys below A-440, its frequency 
is approximately 261 Hz.  Consult chapter 9 for even more details.  
Musical notation shows which notes are to be played and their relative timing (half, quarter, or 
eighth). Figure 3 shows how the keys on the piano correspond to notes drawn in musical 
notation. The white keys are all labeled as A, B, C, D, E, F, and G; but the black keys are 
denoted with “sharps” or “flats.”  A sharp such as A# is one key number larger than A; a flat is 
one key lower, e.g., A4

b is key number 48. 

Figure 3 Musical notation is a time-frequency diagram where vertical position indicates which note is to be 
played. Notice that the shape of the note defines it as a half, quarter or eighth note, which in turn defines the 
duration of the sound. 

                                                                                                                                                             
6 If you have little or no experience reading music, don't be intimidated. Only a little music knowledge is needed to 
carry out this lab.  On the other hand, the experience of working in an application area where you must quickly 
acquire knowledge is a valuable one.  Many real-world engineering problems have this flavor, especially in signal 
processing which has such a broad applicability in diverse areas such as geophysics, medicine, radar, speech, etc. 

may Page 5 11/30/2005 



Another interesting relationship is the ratio of fifths and fourths as used in a chord.  Strictly 
speaking the fifth note should be 1.5 times the frequency of the base note.  For middle-C the fifth 
is G, but the frequency of G is about 392 Hz which is not exactly 1.5 times 261.6.  It is very 
close, but the slight detuning introduced by the ratio 21/12 gives a better sound to the piano 
overall. This innovation in tuning is called “equally-tempered” or “well-tempered” and was 
introduced in Germany in the 1760's and made famous by J. S. Bach in the “Well Tempered 
Clavier,” which is the source of the song for this lab.  
You can use the ratio 21/12 to calculate the frequency of notes anywhere on the piano keyboard.  
For example, the E-flat above middle-C (black key number 43) is 6 keys below A-440, so its 
frequency should be f43 = 440 x 2-6/12 = 3312/440 ≈  Hertz.  
 

3 Warm-up 

3.1 Note Frequency Function 
Now write a VI to produce a desired note for a given duration. Your VI should be in the form of 
a sub VI called key2note.vi.  Your VI should have the following form:  

 
The block to the right of keynum is an MathScript Node block7.  Once you have placed the 
MathScript Node on the block diagram, right-click on the left edge and select Add Input and 
type keynum to create the keynum input.  Do the same selecint Add Output on the right side to 
add the freq output.  Type in this block the formula given above to determine the frequency for a 
sinusoid in terms of its key number.  You should start from a reference note (middle-C or A-440 
is recommended) and solve for the frequency based on this reference.  
Attach a tripleDisplay and select Play Sound to listen to your note.  Does it sound right? 

Instructor Verification (separate page) 

3.2 Synthesize a Scale 
In a previous section you completed the key2note.vi VI which synthesizes the correct 
sinusoidal signal for a particular key number.  Now, use that function to finish the following 
incomplete VI that will play scales:  

                                                 
7 This is a handy block to know about since you can enter several line of MATLAB-like code in it. 

may Page 6 11/30/2005 



  
The Append Waveforms VI (right-most above) takes to waveforms and appends them.  Review 
for a moment what the for loop does and what the brown triangles on the left and right of the for 
loop do.  The function generator on the upper left is used to generate a single sample zero valued 
waveform to serve as a starting point for the output.  It feeds into the shift register of the loop.  
Each time through the loop a new note is generated and appended to the previous notes.  Finally 
the waveform for the entire scale emerges from the right of the for loop. 
You need to figure out how to add the key2note VI so the scale will play.  Attach a 
tripleDisplay and listen to your scale.  Does it sound right?  Try changing some note numbers 
and durations.  Play a bit.  Save this VI as PlayScale.vi. 

Instructor Verification (separate page) 

3.3 Spectrogram 
In this part, you will display the spectrogram of the scale synthesized in the previous section.  
Remember that the spectrogram displays an image that shows the frequency content of the 
synthesized time signal.  Its horizontal axis is time and its vertical axis is frequency. 

a) Generate the signal for the scale with the PlayScale VI from above. 
Click the Spectrogram tab.  Zoom in to see the progression of the consecutive notes in the scale 

(click the middle of the three buttons on the bottom left ), and identify the note A-
440 in your spectrogram.  Below the spectrum display are some values that control how the 
display is computed.  The middle one is the window length which could be varied to get different 
looking spectrograms.  The spectrogram is able to “see” the separate spectrum lines with a longer 
window length, e.g., 1024 or 20488. 

Instructor Verification (separate page) 

4 Lab Exercise: Synthesis of Musical Notes 
The audible range of musical notes consists of well-defined frequencies assigned to each note in 
a musical score.  Five different pieces are given in the book, but we have chosen a different one 
for the synthesis program in this lab.  Before starting the project, make sure that you have a 
working knowledge of the relationship between a musical score, key number and frequency.  The 
following steps are an overview of the process of actually synthesizing the music.  Read it 

                                                 
8 Usually the window length is chosen to be a power of two, because a special algorithm called the FFT is used in 
the computation. The fastest FFT programs are those where the signal length is a power of 2. 

may Page 7 11/30/2005 



through, but don't do it now.  Rather we will walk you through each step in greater detail in the 
sections that follow.  

a) Determine a sampling frequency that will be used to play out the sound through the 
D-to-A system of the computer.  This will dictate the time Ts between samples of the 
sinusoids. 

b) Determine the total time duration needed for each note, and also determine the 
frequency (in hertz) for each note (see Figure 2 and the discussion of the well-
tempered scale in the warm-up.)  A comma-separated data file called 
WellTempered.csv is provided with this information stored in columns; this contains 
the portion of the piece needed for this lab.  A second file called 
WellTemperedShort.csv has the same information for the first few measures of the 
piece; you may find this useful for initial debugging.  Both of these files can be found 
in the LabVIEW files link.  

c) Synthesize the waveform as a combination of sinusoids, and play it out through the 
computer's built-in speaker or headphones. 

d) Make a plot of a few periods of two or three of the sinusoids to illustrate that you 
have the correct frequency (or period) for each note. 

e) Include a spectrogram of a portion of your synthesized music--probably about 1 or 2 
secs--so that you can illustrate the fact that you have all the different notes.  This 
piece has many sixteenth notes, so a window length of 512 might be the best choice. 
In addition, the spectrogram will scale the frequency axis to run from zero to half the 
sampling frequency, so it might be useful to “zoom in” on the region where the notes 
are. 

4.1 Spectrogram of the Music 
Musical notation describes how a song is composed of different frequencies and when they 
should be played.  This representation can be considered to be a time-frequency representation of 
the signal that synthesizes the song.  In LabVIEW we can compute a time-frequency 
representation from the signal itself.  This is called the spectrogram, and its implementation with 
the LabVIEW VI tripleDisplay.  To aid your understanding of music and its connection to 
frequency content, a LabVIEW VI is available so that you can visualize the spectrogram along 
with musical notation. This GUI also has the capability to synthesize music from a list of notes, 
but these notes are given in “standard” musical notation, not key number.  For more information, 
consult the {\tt help} on {\tt musicgui.m}.  

4.2 Fugue #2 for the Well-Tempered Clavier 
Fugue #2 for the Well-Tempered Clavier is one of those pieces of classical music that everyone 
has heard, but nobody particularly remembers its name. The first few measures are shown in 
Figure 4, and all the measures that you must synthesize can be found on the website. 

may Page 8 11/30/2005 



Figure 4 First few measures of the piece Fugue #2 for the Well-Tempered Clavier. 
You must synthesize the entire portion of the Fugue #2 for the Well-Tempered Clavier given in 
WellTempered.cvs by using sinusoids.9  

4.3 Data File for Notes 
The comma-separated files WellTempered.csv and Well TemperedShort.csv contain note a 
duration information for the Fugue #2 for the Well-Tempered Clavier.   

 
The block diagram above shows how to read the file.  The left-most block is a Read from 
Spreadsheet File block.  The top left constant is the path to the file to be read.  The True/False 
constant tells it to transpose the output so that we can get to the columns of data easily.  The 
bottom ,(comma) tells it the values are separated by commas.  The right two blocks are Index 
Array blocks.  The top block gets the 0th column of data (the key numbers) the bottom block 
gets the 1st column which is the duration data.  You could add another column to the spreadsheet 
that contains amplitude data.  If so, it would be easy to add another Index Array block to access 
that data too. 

4.3.1 Timing 
Musicians often think of the tempo, or speed of a song, in terms of “beats per minute” or BPM, 
where the beats are usually quarter notes. To the right of Allegretto moderato in Figure 4 you 
will see the BPM for this song.  You should write the code so that the BPM is a control that can 
be changed easily.  For example, you might let the BPM be a control on the front panel. 
Computer programs which let musicians record, modify, and play back notes played on a 
keyboard or other electronic instrument are called “sequencers.”10 The timing resolution of a 
sequencer is usually measured in “pulses per quarter note,” or PPQ. In this lab, we will employ 
four pulses per quarter note. A real commercial sequencer would have a much higher PPQ to 
encapsulate the subtle timing nuances of a real human playing a real instrument. The starting 
times and durations of notes in the music file provided to you are specified in terms of “pulses,” 
so it will be helpful helpful to compute the number of “seconds per pulse,” for instance via:  
                                                 
9Use sinusoids sampled at 11025 samples/sec (a lower sampling rate could be used if you have a computer with 
limited memory). 
10 Popular commercial sequencers include Mark of the Unicorn's Digital Performer, Emagic's Logic Audio, 
Steinberg's Cubase and Opcode's Studio Vision. 

may Page 9 11/30/2005 



 
 beats_per_second = bpm/60; 
 seconds_per_beat = 1/beats_per_second; 
 seconds_per_pulse = seconds_per_beat / 4; 

 
If the tempo is defined only once, then it could be changed: for example, setting bpm = 240 
would make the whole piece play twice as fast.  This is useful for debugging. 
Another timing issue is related to the fact that when a musical instrument is played, the notes are 
not continuous.  Therefore, inserting very short pauses between notes usually improves the 
musical sound because it imitates the natural transition that a musician must make from one note 
to the next. An envelope (discussed below) can accomplish the same thing.  

4.4 Assessment 
After you finish the project, assess the quality of your synthesized result. Suggest some other 
features that could be incorporated into your program if you had more time to work on it. Some 
commonly used improvements are described in the next section. 

4.5 Musical Tweaks 
The musical passage is likely to sound very artificial, because it is created from pure sinusoids.  
Therefore, you should try to improve the quality of the sound by incorporating some 
modifications.  For example, one improvement comes from using an “envelope,” where you 
multiply each pure tone signal by an envelope E(t) so that it fades in and out. 

x(t) = E(t) cos( 2πfkeyt + φ) 
If an envelope is used it, should “fade in” quickly and fade out more slowly.  An envelope such 
as a half-cycle of a sine wave sin(πt/dur) is simple to program, but it sounds poor because it does 
not turn on quickly enough, so simultaneous notes of different durations no longer appear to 
begin at the same time.  A standard way to define the envelope function is to divide E(t) into four 
sections: attack (A), delay (D), sustain (S), and release (R).  Together these are called ADSR.  
The attack is a quickly rising front edge, the delay is a small short-duration drop, the sustain is 
more or less constant and the release drops quickly back to zero. Figure 5 shows a linear 
approximation to the ADSR profile. Look for the Arbitrary Wave VI or Ramp Pattern VI for a 
way to create linearly increasing and decreasing values. 
 

 
Figure 5 ADSR profile for an envelope function E(t). 

 

may Page 10 11/30/2005 



Some other issues that affect the quality of your synthesis include relative timing of the notes, 
correct durations for tempo, rests (pauses) in the appropriate places, relative amplitudes to 
emphasize certain notes and make others soft, and harmonics.  Since true piano sounds have a 
second and third harmonic content, and we have been studying harmonics, this modification is 
relatively simple, but be careful to make the amplitudes of the harmonics smaller than the 
fundamental frequency component.11  
Furthermore, if you include too many higher harmonics, you might violate the sampling theorem 
and cause aliasing.  You should experiment to see what sounds best.  

4.6 Programming Tips 
You may want to modify your key2note VI to accept additional parameters describing amplitude, 
duration, etc.  In addition, you might choose to add an envelope and/or harmonics.  Chords are 
created on a computer by simply adding the signal vectors of several notes. Although we have 
provided a LabVIEW file containing the note values and durations for Fugue #2 for the Well-
Tempered Clavier, you are free to modify the duration values or add notes if you think it will 
improve the quality of the synthesized sound.  

5 LabVIEW things to remember for future labs: 
• Using a Function Generator, adjusting the sampling rate and number of samples using a 

Bundle. 
• Appending waveforms with Append Waveforms. 
• Debugging, setting breakpoints. 
• Displaying Spectrograms, setting the window length. 
• Reading comma separated value files. 
• MathScript 
• …  What else? 

 
 

                                                 
11 In the early 80's, a company called Digital Keyboards produced a commercial synthesizer called the Synergy in 
which the user created sounds via “additive synthesis” by specifying the envelops of individual frequency 
components. This is a quite powerful, albeit tedious and challenging way to create realistic sounds. American 
composer Wendy Carlos (best known for Switched-On Bach and her score for A Clockwork Orang)e used it 
extensively in her score for Tron. See http://www.synthmuseum.com/synergy/synergy01.html.  

may Page 11 11/30/2005 

http://www.synthmuseum.com/synergy/synergy01.html


Lab 04 
Instructor Verification Sheet 

For each verification, be prepared to explain your answer and respond to other related questions that the 
lab TA's or professors might ask. Turn this page in at the end of your lab period. 

 
 
Name: ______________________________ Date of Lab: ________________________ 
 
 
Part 3.1 Complete and demonstrate the VI key2note.vi: 
 
 
 Verified: _________________________ Date/Time: ____________________ 
 
Part 3.2  Complete and demonstrate the script file PlayScale.vi: 
 
 
 Verified: _________________________ Date/Time: ____________________ 
 
Part 3.3 Demonstrate the spectrogram of the scale generated by PlayScale.vi: 
 
 
 Verified: _________________________ Date/Time: ____________________ 
 

Sound Evaluation Criteria 
 
Does the file play notes? All Notes ______  Most ______ Treble only_______ 
 
Overall Impression: _____________________________________ 
Excellent: 

Enjoyable sound, good use of extra features such as harmonics, envelopes, etc. 
Good: 
  Bass and Treble clefs synthesized and in sync, few errors, one or two special features. 
OK: 
  Basic sinusoidal synthesis, including the bass, with only a few errors. 
Poor: 
  No bass notes, or treble and bass not synchronized, many wrong notes. 
 

may Page 12 11/30/2005 


	Introduction
	Pre-Lab
	LabVIEW Review
	Theory of Sampling
	D-to-A Conversion
	Debugging Skills
	Piano Keyboard

	Warm-up
	Note Frequency Function
	Synthesize a Scale
	Spectrogram

	Lab Exercise: Synthesis of Musical Notes
	Spectrogram of the Music
	Fugue #2 for the Well-Tempered Clavier
	Data File for Notes
	Timing

	Assessment
	Musical Tweaks
	Programming Tips

	LabVIEW things to remember for future labs:

