
DSP First 
Lab 04a: Synthesis of Sinusoidal Signals - Speech Synthesis 

 
Pre-Lab and Warm-Up: You should read at least the Pre-Lab and Warm-up sections of this lab 
assignment and go over all exercises in the Pre-Lab section before going to your assigned lab 
session. 

Verification: The Warm-up section of each lab must be completed during your assigned Lab 
time and the steps marked Instructor Verification must also be signed off during the lab time. 
One of the laboratory instructors must verify the appropriate steps by signing on the Instructor 
Verification line. When you have completed a step that requires verification, simply 
demonstrate the step to the TA or instructor. Turn in the completed verification sheet to your TA 
when you leave the lab. 

Lab Report: It is only necessary to turn in a report on Section 4 with graphs and explanations. 
You are asked to label the axes of your plots and include a title for every plot. In order to keep 
track of plots, include your plot inlined1 within your report. If you are unsure about what is 
expected, ask the TA who will grade your report. 

1 Introduction 
This lab includes a project on speech synthesis with sinusoids. The speech synthesis will be done 
with sinusoidal waveforms of the form 
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where each sinusoid will have short duration on the order of the  pitch period of the speaker.  
One objective of this lab is to study how many sinusoids are needed to create a sentence that 
sounds good.  A secondary objective of the lab is the challenge of putting together the short 
duration sinusoids without introducing artifacts at the transition times.  Finally, much of the 
understanding needed for this lab involves the spectral representation of signals - a topic that 
underlies this entire course.  

2 Pre-Lab 
In this lab, the periodic waveforms and speech signals will be created with the intention of 
playing them out through a speaker.    Therefore, it is necessary to take into account the fact that 
a conversion is needed from the digital samples, which are numbers stored in the computer 
memory to the actual voltage waveform that will be amplified for the speakers.  

2.1 LabVIEW Review 
You learned several LabVIEW techniques during the last lab.  Here is a list of some of them: 
How to use probes. 

• How to convert a VI to a sub VI 
o Adding terminals to a sub VI 

                                                 
1 Remember, if you want to include a waveform plot, right-click and select Data Operations»Export Simplified 
Image…. 



o Adding a sub VI to a block diagram 
• How to use a for loop 

o Iterating over an array 
o Using N to specify the number of iterations 
o Using i 
o Using shift registers to carry values from one iteration to another. 

2.2 Theory of Sampling 
Chapter 4 treats sampling in detail, but this lab is usually done prior to lectures on sampling, so 
we provide a quick summary of essential facts here.  The idealized process of sampling a signal 
and the subsequent reconstruction of the signal from its samples is depicted in Figure 1. 

 
Figure 1: Sampling and reconstruction of a continuous-time Signal. 

This figure shows a continuous-time input signal x(t), which is sampled by the continuous-to-
discrete (C-to-D) converter to produce a sequence of samples x[n]=x(nTs), where n is the integer 
sample index and Ts is the sampling period. The sampling rate is fs=1/Ts where the units are 
samples per second.  As described in Chapter 4 of the text, the ideal discrete-to-continuous (D-
to-C) converter takes the input samples and interpolates a smooth curve between them.  The 
Sampling Theorem tells us that if the input signal x(t) is a sum of sine waves, then the output y(t) 
will be equal to the input x(t) if the sampling rate is more than twice the highest frequency fmax in 
the input, i.e., fs > 2 fmax.  In other words, if we sample fast enough then there will be no 
problems synthesizing the continuous audio signals from x[n].  

2.3 D-to-A Conversion 
Most computers have a built-in analog-to-digital (A-to-D) converter and a digital-to-analog (D-
to-A) converter (usually on the sound card).  These hardware systems are physical realizations of 
the idealized concepts of C-to-D and D-to-C converters respectively, but for purposes of this lab 
we will assume that the hardware A/D and D/A are perfect realizations.  
The digital-to-analog conversion process has a number of aspects, but in its simplest form the 
only thing we need to worry about at this point is that the time spacing (Ts) between the signal 
samples must correspond to the rate of the D-to-A hardware that is being used.  From LabVIEW, 
the sound output is done by the soundcs VI or the tripleDisplay VI which both support a 
variable D-to-A sampling rate if the hardware on the machine has such capability.  A convenient 
choice for the D-to-A conversion rate is 11025 samples per second2, so Ts = 1/11025 seconds; 
another common choice is 8000 samples/sec.  Both of these rates satisfy the requirement of 
sampling fast enough as explained in the next section. In fact, most piano notes have relatively 
low frequencies, so an even lower sampling rate could be used.  If you are using soundcs or 
tripleDisplay, the input will be scaled automatically for the D-to-A converter.  
 
                                                 
2 This sampling rate is one quarter of the rate (44,100 Hz) used in audio CD players. 
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a) The ideal C-to-D converter is, in effect, being implemented whenever we take 
samples of a continuous-time formula, e.g., x(t) at t = tn.  This is done for us in 
LabVIEW by the Function Generator VI.  It first makes a vector of times, and then 
evaluates the formula for the continuous-time signal at the sample times, i.e., x[n] = 
x(nTs) if tn = nTs.  This assumes perfect knowledge of the input signal, but we have 
already been doing it this way in previous labs. To begin, create a vector x1 of 
samples of a sinusoidal signal with A1=100, ω1=2π(800), and φ1=-π/3.  Use a 
sampling rate of 11025 samples/second, and compute a total number of samples 
equivalent to a time duration of 0.5 seconds.  You may find it helpful to recall that in 
LabVIEW the sampling info input lets you set the sampling rate and number of 
samples. 

  
In the left diagram the sampling rate is set to 11025 and there are 5000 samples.  The 
right diagram shows how to use a Bundle3 to access the sampling rate and number of 
samples separately.  You need to figure out how to calculate the number of samples 
given fs and dur. You should use the sin_syn function from a previous lab for 
this part.  Use tripleDisplay to look at and play the resulting vector through the D-to-
A converter of the your computer, assuming that the hardware can support the fs = 
11025 Hz rate.  Listen to the output. 

b) Now create another vector x2 of samples of a second sinusoidal signal (0.8 secs. in 
duration) for the case A2=80, ω2=2π(1200), and φ2=+π/4.  Listen to the signal 
reconstructed from these samples.  How does its sound compare to the signal in part 
(a)? 

c) Concatenate the two signals x1 and x2 with a short duration of 0.1 seconds of 
silence in between.  You should be able to use something like:  

 
where the right-most two blocks are Append Waveforms VIs4.  Note the middle 

                                                 
3 Hint:  right-click the background of the block diagram and then click Search.  Type Bundle to find it. 
4 You can find this VI by right-clicking on the background of the block diagram view and selecting Search.   



function generator has amplitude of 0.  Determine the correct value of dur to make 
0.1 seconds of silence. Listen to this new signal to verify that it is correct. 

d) To verify that the concatenation operation was done correctly in the previous part, 
attach a tripleDisplay.  This will plot a huge number of points, but it will show the 
“envelope” of the signal and verify that the amplitude changes from 100 to zero and 
then to 80 at the correct times. 

2.4 Debugging Skills 
Testing and debugging code is a big part of any programming job, as you know if you have been 
staying up late on the first labs.  Almost any modern programming environment provides a 
debugger so that break-points can be set and variables examined in the middle of program 
execution.  Of course, many programmers insist on using the old-fashioned method of inserting 
print statements in the middle of their code (which is rather hard in a graphical language like 
LabVIEW).  This is akin to riding a tricycle to commute around Atlanta.  
Do the exercise in the Debugging folder to learn some simple, yet powerful techniques. 

2.5 Synthesizing a Signal from Sections 
In speech synthesis, we will create the overall signal one section at a time. One way to do this is 
to add together a number of short signals; a mathematical notation for adding short signals that 
are time-shifted is given by 
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where each signal xk(t) is shifted by the amount T.  If each signal has a duration of T, then the 
shifted signals  xk(t-kT) do not overlap, and then we would actually be creating x(t) by  
concatenating the sections xk(t) one after the other, so  the  total duration of x(t) would be KT.  
Consider the case where 

))100411(2cos()( tktxk += π  for Tt ≤≤0  
In order to concatenate six sinusoids each with a duration of T = 0.3 secs, run the LabVIEW 
code below to make the signal which will have a duration of 1.8 s.  The code can be found in 
FirstExample.vi Then the changing frequency content (vs. time) of the synthesized signal can 
be verified by displaying a spectrogram.  

One problem with this synthesis by concatenation is that the transition from one section to the 
next might not be smooth. Examine a plot of x(t) to see the jumps at multiples of T.  

3 Warm-up 
We can join signal segments together smoothly if we use “windowing.” 



3.1 Triangular Window 
  Sometimes it is necessary to modify the values of a signal to taper the ends. This can be 
accomplished with what is called a window function.   One of the simplest window functions is 
the triangular window defined5 for duration T as 
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(a) Draw a sketch (by hand) of ω∆(t) for the case T=50 millisec. 
(b) LabVIEW has a vi that applies a triangle window to an array.  Build the following to 

test it. Save it as triwin.vi.  Hint:  Use Search to find Triangle Window.vi. 

 
Notice that Triangle Window takes a Waveform and an input and outputs and array.  
The Build Waveform vi is used to convert the array back to a waveform. 

(c) Test your triwin vi by making a LabVIEW plot of a triangular window for the case 
T=50 millisec, using a sampling rate of 8000 samples/sec.  How long is the window 
in number of samples? 

Instructor Verification (separate page) 

3.2 Overlapped Signal Segments 
In Section 2.3, you created a long signal by concatenating short segments. A second method of 
forming the long signal is to use overlapped short segments. Here we will study how to extract   
such overlapped segments from a long signal.   Suppose that we start with a long signal y(t) and 
we extract short segments from y(t) in the following manner: 
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In other words, the kth segment, yk(t), starts at t=kT and ends at t=(k+2)T.  Furthermore, 
successive signal segments, such as yk(t)and yk+1(t), have 50% overlap. 

(a) Number of Segments: If the duration of y(t) is 1.5 sec. and T = 50 msec., how many 
segments would be produced by overlap method in (3)? 

(b) Segment Length: If we are using LabVIEW to represent the signal y(t), then we      
would sample y(t) at a rate fs to produce a vector containing the samples, i.e., y[n] = 
y(n/fs).  For example, if  fs = 8000 samples/sec and the duration of y(t) is 1.5 sec., then 
the entire “y” vector would contain 12000 samples.  How many samples are 
contained in each segment created by the overlap method in (3) if T=50 msecs. and fs 
= 8000 Hz? 

(c) Write a short LabVIEW function that will perform the segmentation according to (3). 
The function’s output should be a matrix whose column length is the number of     
samples in one segment, and whose row length is the number of segments. Here is a 
template: 

                                                 
5 The subscript ∆ in ω∆(t) is meant to convey the shape of the triangular window. 



 
(d) Test your function for T=25 msec. and fs=8000 samples/sec. on the following signal: 

 
Explain why every other column of the yseg matrix is identical for this test case. Use the 
LabVIEW vi Index Array to plot one row at a time.       

Instructor Verification (separate page) 

3.3 Overlapped  Windows 
The triangular window has the following interesting property: when you add shifted triangular 
windows, the result is one, except for the ends. This property can be stated mathematically as 
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The important line in this equation is the second one which says that the sum equals one in the 
intervals where the triangles overlap, see Fig. 1. 



 
Figure 1: Sum of shifted and overlapped triangular windows. The window length must be even for this 

property to hold on the time-sampled window. 

3.4 Add Overlapped and Windowed Segments 
We can use the overlap property of the triangular window (eq. (4) in Section 3.3) to add back 
together the segments from the 50% overlap method of eq. (3). First of all, we would apply the 
triangular window to each segment, i.e., ω∆(t)yk(t), and then we would add all of the segments 
together with the correct shift. 
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The result will be equal to y(t) except for the regions at the ends. 
(a) Here is a code fragment that does the windowing: 

 
(b) Write a for loop that will add the windowed segments back together to form yy 

over most of the time interval, except for the first and last T secs. 
(c) Now test the entire process with the signal 440 Hz cosine with a segment duration of 

10 millisec., 50% overlap, and fs = 8000 Hz. Perform the three processing steps as:  
(1) break it into segments (refer to Section 3.2(c)),  
(2) window each segment with a triangular window (part (a) above), and  
(3) add the segments back together (part (b) above).  

Show that the result is a 440-Hz cosine, except for the first 5 ms and the last 5 ms. 

4 Lab: Synthesis of Speech with Sinusoids 
Speech signals are often “quasi-periodic” especially in vowel regions. Thus it is reasonable to 
expect that speech utterances might be synthesized from a few sinusoids. On the other hand, 
fricatives such as /s/ and /sh/ sounds are not sinusoidal, so there are probably regions where the 
sinusoidal synthesis would do a poor job. Fortunately, the intelligibility of an utterance depends 
mostly on the vowels and less on the fricatives. 
Speech can be synthesized by adding together a bunch of short-duration sinusoids. Thus, an 
important factor in the sinusoidal synthesis of speech is the frame length, which is the time 
interval during which one set of sinusoids is used. From frame to frame the sinusoids can change. 
In speech, there are two time durations that would be relevant to picking the frame length: the 



speaker’s pitch period and the articulation rate of humans in general. The pitch period varies 
with individuals and with sex—adult males generally have a lower pitch than adult females and 
hence the pitch period is longer for an adult male speaker. The articulation rate is a measure of 
how fast a speaker can form different sounds and is dictated by how fast the muscles in the vocal 
tract can move to form different sounds. For example, try saying the alphabet (A-B-C-D-E-F) as 
fast as you can. It is generally accepted that the individual sounds can change no faster than 
every 40–50 millisec. Taken together the pitch frequency and articulation rate determine how 
often we should try changing the sinusoids for the speech synthesis. We will use a frame length 
around 10 ms. which is close to the pitch period of most speakers. 
In the process of actually synthesizing the speech, keep in mind the following general ideas: 

(a) Determine a sampling frequency that will be used to play out the sound through the 
D-to-A system of the computer. This will dictate the time Ts = 1/fs between samples 
of the sinusoids. 

(b) The total time duration needed for each sinusoid is fixed by the frame length. 
(c) An analysis function sigAnalyze.vi is provided to extract sinusoidal components from 

a signal. It’s block diagram is locked so you can run it, but not look inside it. 
(d) Synthesize the speech waveform as a combination of overlapped (or concatenated) 

sinusoids, and play it out through the computer’s built-in speaker or headphones. 

Include a spectrogram image of a portion of each synthesized utterance—probably about 1 or 2 
seconds — so that you can illustrate the fact that you have used the correct number of sinusoids. 
In effect, you can use the spectrogram to confirm the correctness of your synthesis. The window 
length in the spectrogram might have to be adjusted, but start with an initial value of 256 for the 
window length in the tripleDisplay, and then increase it. Note: by default, the spectrogram will 
scale the frequency axis to run from zero to half the sampling frequency, so it might be useful to 
“zoom in” on the region where the frequencies are. 

Data Format for Speech Signals 
Any speech signal can be encoded with the LABVIEW sigAnalyze VI which has the 
following calling format: 

Input: 
  signal in = input signal waveform (not an array) 
  numSines = # of sinusoids to find (only the positive freqs are counted) 
  T = duration of overlap between frame in secs.  Total frame size is 2T. 
Output: 
  Camps = array of complex amps (number of frames by numSines) 
  Freqs = array of freqs, one for each complex amp 

The output of sigAnalyze gives the frequencies and complex amplitudes needed in each 
frame; the inputs are the analysis parameters such as frame duration,  and number of sinusoids. 
In the complex amplitude and frequency arrays, the value of Freqs(j,n)is the nth frequency 
(in Hz) in the jth frame of the signal; the corresponding complex amplitude is Camps(j,n). 

There are at least three ways to get a speech signal into LABVIEW, depending on the format: 
1. Use the Sound File Read Simple VI to load the speech data in from a WAV file.  

This VI produces an array of waves.  If you aren’t doing stereo, use the following to 
get the first waveform: 



 
2. The Get Waveform Subset allows you to process just part of the file. 
3. Use a VI with data already in it.  For example, place the sigMystery VI on your 

diagram. 
4. Use the Acquire Sound VI to record directly from a microphone into LabVIEW. 

 

In addition, you can write a WAV file from LabVIEW with the Sound File Write 
Simnple VI. Be careful that you scale the signal’s amplitude to be between 0 and 1. 

4.1 Synthesis 
In this lab, you will use the given VI sigAnalyze to create a set of complex amplitudes and 
frequencies of sinusoids for each small frame of various signals, and then write a function to re-
synthesize the speech signal from a limited number of sinusoidal components. 

(a) Write a sigSynth VI that will take the outputs from sigAnalyze and produce 
an output signal in which the frames can be overlapped. Note: If the signal was 
analyzed with an overlap in sigAnalyze, then you must use a segmenting strategy 
like overlap50 inside of sigSynth. 

(b) Apply sigAnalyze to a recording6
 of your own voice which is sampled at fs = 

8000 Hz. Use a frame duration of 10 ms, a 5 ms overlap, and extract 8 sinusoidal 
frequency components (per frame).7 One possible utterance is the vowels, i.e., “A-E-
I-O-U”. 

(c) Synthesize the speech using all 8 frequencies components obtained in the analysis of 
part (b). Compare spectrograms of the original and the resynthesized signal, and 
comment on the differences that you hear in the sounds. 

(d) Now, extract 4 frequency components and synthesize the speech (these will be the 
four largest ones). Compare spectrograms of the original and the resynthesized signal, 
and comment on the differences that you hear in the sounds. 

4.2 Synthesize Music 
The per-frame sinusoidal synthesis should work on signals other than speech, e.g., music, 
singing, etc. However, since the frame duration parameter depends on the type of signal, it is 
unlikely that the value picked for speech signals will be the best choice for a signal like music. 

(a) Apply the sigAnalysis and sigSynth functions to the recording of the piano 
piece Fúr Elise which can be found in the file FurElise.wav. Use the same 

                                                 
6 LABVIEW (version 7) has a function called audiorecorder that can acquire sound from a microphone via a sound card. 
Consult the help on audiorecorder and read the examples. Make sure to save the data as “double” instead of “int16.” 
7 4The file catdogs.wav is also available, but you are not required to process it for your lab report. 



parameters as before: a frame duration of 10 ms, and overlap of 5 ms, and keep 8 
sinusoidal components from the analysis. Compare spectrograms of the original and 
the resynthesized signal, and comment on the differences that you hear in the sounds. 

(b) Now, try to get a better result by changing the number of sinusoids. Determine how 
many are needed to get a result that sounds very close to the original. There is 
probably not one answer for this number, because it depends on your individual 
perception of the distortions in the resynthesized signal. 

(c) Now, try to improve the result by changing the frame duration while also reducing the 
number of sinusoids from the amount found in the previous part. For example, 
consider the possibility that if you make the frame duration shorter, then you might be 
able to reduce the number of sinusoids. 

4.3 Mystery Signal 
One more data set, sigMystery.mat, is included as a challenge for synthesis. This is a .MAT 
file containing the arrays Camps and Freqs extracted from a speech signal.  There are 
connectors for T and dt, and a 50% overlap was used. You should run your synthesis algorithm 
with the objective of trying to understand what is being uttered. 

4.4 Testing 
Bring your working synthesis program to the lab when your report is due. A couple of test 
signals will be run to verify that you have a successful synthesis program. The format of the test 
signals will the same as sigMystery.vi, so make sure that your program can handle such 
inputs quickly and easily. In addition, you will be asked some questions about the inner workings 
of your LABVIEW synthesis function(s). 

4.5 Lab Report Suggestions 
Your lab report should include spectrograms of the original and the synthesized signals. The 
write-up should point out features in the spectrograms that indicate the differences between the 
eight-sinusoid and four-sinusoid cases for your voice. In addition, you should make subplots of 
the original signal and the resynthesized signal versus time, and identify where they are different 
by marking such features on the plots. The comparison will be easier if you scale both the 
original and the resynthesized signal to have the a maximum value of one. 



Lab 04a 
Instructor Verification Sheet 

For each verification, be prepared to explain your answer and respond to other related questions that the 
lab TA's or professors might ask. Turn this page in at the end of your lab period. 

 
 
Name: ______________________________ Date of Lab: ________________________ 
 
 
Part 3.1 Make a triangular window M-file triwin.m: 
 
 
 Verified: _________________________ Date/Time: ____________________ 
 
Part 3.2 Test overlapped signal segments: 
 
 
 Verified: _________________________ Date/Time: ____________________ 
 
Part 3.3 Overlapped triangular windows: 
 
 
 Verified: _________________________ Date/Time: ____________________ 
 

Speech Evaluation Criteria 
 
Are the sentences intelligible All ___________  Most ______ Only one_________ 
 
 
Does the music (Fúr Elise) sound good? 
 
Mystery sentence correct? 
 
Test sentence correct? 
 
Overall Impression:_________________________________________________________  
 
Good: Good sound quality. Works well for both 4 and 8 sinusoids. 
 
OK: Basic sinusoidal synthesis, but not smooth at the boundaries. Possible problem with 
windowing. 
 
Poor: Synthesis does not work properly. Poor sound quality. 


