
 
DSP First 

Lab 06: Digital Images: A/D and D/A 
 

Pre-Lab and Warm-Up: You should read at least the Pre-Lab and Warm-up sections of 
this lab assignment and go over all exercises in the Pre-Lab section before going to your 
assigned lab session. 
 
Verification: The Warm-up section of each lab must be completed during your assigned 
Lab time and the steps marked Instructor Verification must also be signed off during the 
lab time. One of the laboratory instructors must verify the appropriate steps by signing 
on the Instructor Verification line. When you have completed a step that requires 
verification, simply demonstrate the step to the TA or instructor. Turn in the completed 
verification sheet to your TA when you leave the lab. 
 
Lab Report: It is only necessary to turn in a report on Section 3 with graphs and 
explanations. You are asked to label the axes of your plots and include a title for every 
plot. In order to keep track of plots, include your plot inlined within your report. If you are 
unsure about what is expected, ask the TA who will grade your report. 
 
 
The objective in this lab is to introduce digital images as a second useful signal type. We 
will show how the A-to-D sampling and the D-to-A reconstruction processes are carried 
out for digital images. In particular, we will show a commonly used method of image 
zooming (reconstruction) that gives “poor” results—a later lab will revisit this issue and 
do a better job. 
 

1 Pre-Lab 

1.1 Digital Images 
 
In this lab we introduce digital images as a signal type for studying the effect of 
sampling, aliasing and reconstruction. An image can be represented as a function x(t1, t2) 
of two continuous variables representing the horizontal (t2) and vertical (t1) coordinates 
of a point in space.1 For monochrome images, the signal x(t1, t2) would be a scalar 
function of the two spatial variables, but for color images the function x(·, ·) would have 
to be a vector-valued function of the two variables.2 Moving images (such as TV) would 
add a time variable to the two spatial variables. 
 
Monochrome images are displayed using black and white and shades of gray, so they 
are called grayscale images. In this lab we will consider only sampled gray-scale still 
images. A sampled gray-scale still image would be represented as a two-dimensional 
array of numbers of the form 
 
 ),(],[ 21 nTmTxnmx =     NnandMm ≤≤≤≤ 1,1  
 
where T1 and T2 are the sample spacings in the horizontal and vertical directions. Typical 
values of M and N are 256 or 512; e.g., a 512×512 image which has nearly the same 
resolution as a standard TV image. In LabVIEW we can represent an image as an array, 



so it would consist of M rows and N columns. The array element at (m, n) is the sample 
value x[m, n]—called a pixel (short for picture element).  

An important property of light images such as photographs and TV pictures is 
that their values are always non-negative and finite in magnitude; i.e., 
 
    ∞<≤≤ max],[0 Xnmx  
 
This is because light images are formed by measuring the intensity of reflected or 
emitted light which must always be a positive finite quantity. When stored in a computer 
or displayed on a monitor, the values of x[m, n] have to be scaled relative to a maximum 
value Xmax. Usually an eight-bit integer representation is used. With 8-bit integers, the 
maximum value (in the computer) would be Xmax = 82  − 1 = 255, and there would be 82  
= 256 different gray levels for the display, from 0 to 255. 

1.2 Displaying Images 
As you will discover, the correct display of an image on a gray-scale monitor can be 
tricky, especially after some processing has been performed on the image. We have 
provided functions in the DSP First Toolbox to handle most of these problems,3 but it will 
be helpful if the following points are noted: 
 

1. All image values must be non-negative for the purposes of display. Filtering may 
introduce negative values, especially if differencing is used (e.g., a high-pass 
filter). 

 
2. The default format for most gray-scale displays is eight bits, so the pixel values 

x[m,n] in the image must be converted to integers in the range 
[ ] 12255,0 8 −=≤≤ nmx . 

 
3. The actual display on the monitor is created by wiring a picture output to a picture 

indicator. Because we are working with 8-bit images the color map in LabVIEW is 
grayscale by default.  The appearance of the image can be altered by running 
using a different “color map.” There is a VI in the DSP First Toolkit called 
“grayscale pixmap to RGB picture.vi” that allows you to change the color map.  In 
our case, we want “grayscale display” where all three primary colors (red, green 
and blue, or RGB) are used equally, creating what is called a “gray map.” This 
can be accomplished by wiring “grayscale array.vi” to the color map input. 

 
This creates a linear mapping, so that each input pixel amplitude is rendered with 
a screen intensity proportional to its value (assuming the monitor is calibrated). 
For our lab experiments, non-linear color mappings would introduce an extra 
level of complication, so they will not be used. 

 
4. When the image values lie outside the range [0,255], or when the image is scaled 

so that it only occupies a small portion of the range [0,255], the display may have 
poor quality. In this lab, we will automatically rescale the image: This requires a 
linear mapping of the pixel values:4 

                                                 
3 If you have the MATLAB Image Processing Toolbox, then the function imshow.m can be used instead. 
4 The MATLAB function show img has an option to perform this scaling while making the image display. 



 

1.3 MATLAB Function to Display Images 
 
You can load the images needed for this lab from *.mat files. Any file with the extension 
*.mat is in MATLAB format and can be loaded via the load command. To find some of 
these files, look for *.mat in the DSP First toolbox or in the MATLAB directory called 
toolbox/matlab/demos. Some of the image files are named echart.mat and zone.mat, but 
there are others within MATLAB’s demos. The default size is 256 � 256, but alternate 

versions are available as 512 � 512 images under names such as zone512.mat. After 

loading, use the command whos to determine the name of the variable that holds the 
image and its size. 
 
Although MATLAB has several functions for displaying images on the CRT of the 
computer, we have written a special function show img() for this lab. It is the visual 
equivalent of soundsc(), which we used when listening to speech and tones; i.e., show 
img() is the “D-to-C” converter for images. This function handles the scaling of the image 
values and allows you to open up multiple image display windows. 
Here is the help on show img: 
 
function [ph] = show_img(img, figno, scaled, map) 
%SHOW_IMG display an image with possible scaling 
% usage: ph = show_img(img, figno, scaled, map) 
% img = input image 
% figno = figure number to use for the plot 
% if 0, re-use the same figure 
% if omitted a new figure will be opened 
% optional args: 
% scaled = 1 (TRUE) to do auto-scale (DEFAULT) 
% not equal to 1 (FALSE) to inhibit scaling 
% map = user-specified color map 
% ph = figure handle returned to caller 
%---- 
 
Notice that unless the input parameter figno is specified, a new figure window will be 
opened. 
 

1.4 Get Test Images 
 
In order to probe your understanding of image display, do the following simple displays: 
 
(a) Load and display the 326 × 426 “lighthouse” image from lighthouse.mat. This image 
can be find in the MATLAB files link. The command load lighthouse will put the sampled 
image into the array ww. Use whos to check the size of ww after loading. When you 
display the image it might be necessary to set the colormap via colormap(gray(256)). 
 
(b) Use the colon operator to extract the 200th row of the “lighthouse” image, and make 
a plot of that row as a 1-D discrete-time signal. 
 

ww200 = ww(200,:); 



 
Observe that the range of signal values is between 0 and 255. Which values represent 
white and which ones black? Can you identify the region where the 200th row crosses 
the fence? 
 

2 Warm-up 
 
The instructor verification sheet may be found at the end of this lab. 

2.1 Synthesize a Test Image 
 
In order to probe your understanding of the relationship between LabVIEW pixel arrays 
and image display, you can generate a synthetic image from a mathematical formula. 
 

(a) Generate a simple test image in which all of the columns are identical by using 
the following outer product in a MathScript node. 

 
xpix=ones(256,1)*(256*(cos(2*pi*(0:255)/16)+1)); 

 
Display the image using the following code. 
 

 
 
Explain the gray-scale pattern that you see. How wide are the bands in number 
of pixels? How can you predict that width from the formula for xpix? 

 
(b) In the previous part, which data value in xpix is represented by white? which one 

by black? 
 

(c) Explain how you would produce an image with bands that are horizontal. Give 
the formula that would create a 400×400 image with 5 horizontal black bands 
separated by white bands. Write the code to make this image and display it. 
 
 

Instructor Verification (separate page) 

2.2 Printing Multiple Images on One Page 
The phrase “what you see is what you get” (WYSIWYG) can be elusive when dealing 
with images. It is VERY TRICKY to print images so that the hard copy matches exactly 
what is on the screen, because there is usually some interpolation being done by the 
printer or by the program that is handling the images. One way to think about this in 
signal processing terms is that the screen is one kind of D-to-A and the printer is another 



kind, but they use different (D-to-A) reconstruction methods to get the continuous-
domain (analog) output image that you see. 
 
Furthermore, if you try to put two images of different sizes into subplots of the same 
MATLAB figure, it won’t work because MATLAB wants to force them to be the same 
size. Therefore, you should display your images in separate MATLAB Figure windows. 
In order to get a printout with MULTIPLE IMAGES ON THE SAME PAGE, use the 
following procedure: 
 
1. In MATLAB, use show img and trusize to put your images into separate figure 
windows at the 
correct pixel resolution. 
 
2. Use the Windows program called PAINT to assemble the different images onto one 
page. This program can be found under Accessories. 
 
3. For each MATLAB figure window, press ALT and the PRINT-SCREEN key at the 
same time, which will copy the active window contents to the clipboard. 
 
4. After each “window capture” in step 3, paste the clipboard contents into PAINT. 
 
5. Arrange the images so that you can make a comparison for your lab report. 
 
6. Print the assembled images from PAINT to a printer. 

2.3 Sampling of Images 
 
Images that are stored in digital form on a computer have to be sampled images 
because they are stored in an M × N array. The sampling rate in the two spatial 
dimensions was chosen at the time the image was digitized (in units of samples per inch 
if the original was a photograph). For example, the image might have been “sampled” by 
a scanner where the resolution was chosen to be 300 dpi (dots per inch).7 If we want a 
different sampling rate, we can simulate a lower sampling rate by simply throwing away 
samples in a periodic way. For example, if every other sample is removed, the sampling 
rate will be halved (in our example, the 300 dpi image would become a 150 dpi image). 
Usually this is called sub-sampling or down-sampling.  
 
Down-sampling throws away samples, so it will shrink the size of the image. This is what 
is done by the following scheme: 
 

wp = ww(1:p:end,1:p:end); 
 
when we are downsampling by a factor of p. 
 

(a) One potential problem with down-sampling is that aliasing might occur. This can 
be illustrated in a dramatic fashion with the lighthouse image.  
Load the lighthouse.mat file which has the image stored in a variable called ww. 
When you check the size of the image, you’ll find that it is not square. Now down-
sample the lighthouse image by a factor of 2. What is the size of the down-
sampled image? Notice the aliasing in the downsampled image, which is 



surprising since no new values are being created by the down-sampling process. 
Describe how the aliasing appears visually.9 Which parts of the image show the 
aliasing effects most dramatically? 

3 Lab Exercises: Sampling, Aliasing, and Reconstruction 

3.1 Down-Sampling 
 
For the lighthouse picture, downsampled by two in the warm-up section: 
 

(a) Describe how the aliasing appears visually. Compare the original to the 
downsampled image. Which parts of the image show the aliasing effects most 
dramatically? 

 
(b) This part is challenging: explain why the aliasing happens in the lighthouse 

image by using a “frequency domain” explanation. In other words, estimate the 
frequency of the features that are being aliased. Give this frequency as a number 
in cycles per pixel. (Note that the fence provides a sort of “spatial chirp” where 
the spatial frequency increases from left to right.) Can you relate your frequency 
estimate to the Sampling Theorem? 

 
You might try zooming in on a very small region of both the original and downsampled 
images. 
 

3.2 Reconstruction of Images 
 
When an image has been sampled, we can fill in the missing samples by doing 
interpolation. For images, this would be analogous to the examples shown in Chapter 4 
for sine-wave interpolation which is part of the reconstruction process in a D-to-A 
converter. We could use a “square pulse” or a “triangular pulse” or other pulse shapes 
for the reconstruction. 
 

 
Figure  1:  2‐D  Interpolation  broken  down  into  row  and  column  operations:  the  gray  dots 
indicate  repeated  data  values  created  by  a  zero‐order  hold;  or,  in  the  case  of  linear 
interpolation, they are the interpolated values. 

For these reconstruction experiments, use the lighthouse image, down-sampled by a 
factor of 3 (similar to what you did in Section 2.3). You will have to generate this by 



loading in the image to the array xx. A down-sampled lighthouse image should be 
created and stored in the variable xx3. The objective will be to reconstruct an 
approximation to the original lighthouse image, which is 256 � 256, from the smaller 

down-sampled image. 
 

(a) The simplest interpolation would be reconstruction with a square pulse which 
produces a “zero-order hold.” Here is a method that works for a one-dimensional 
signal (i.e., one row or one column of the image), assuming that we start with a 
row vector xr1, and the result is the row vector xr1hold. 

 
     xr1 = (-2).ˆ(0:6); 
     L = length(xr1); 
     nn = ceil((0.999:1:4*L)/4);%<-- Round up to the integer part 
     xr1hold = xr1(nn); 
 

Plot the vector xr1hold to verify that it is a zero-order hold version derived from 
xr1. Explain what values are contained in the indexing vector nn. If xr1hold is 
treated as an interpolated version of xr1, then what is the interpolation factor? 
Your lab report should include an explanation for this part, but plots are 
optional—use them if they simplify the explanation. 

 
(b) Now return to the down-sampled lighthouse image, and process all the rows 

of xx3 to fill in the missing points. Use the zero-order hold idea from part (a), but 
do it for an interpolation factor of 3. Call the result xholdrows. Display 
xholdrows as an image, and compare it to the downsampled image xx3; 
compare the size of the images as well as their content. 

 
(c) Now process all the columns of xholdrows to fill in the missing points in each 

column and and call the result xhold. Compare the result (xhold) to the original 
image lighthouse. Include your code for parts (b) and (c) in the lab report. 

 
(d) Linear interpolation can be done in LabVIEW using Interpolate 1D.vi.  

 
When unsure about a command, use help. 

 
Its default mode is linear interpolation, but it can also do other types of polynomial 
interpolation. Here is an example on a 1-D signal: 
 

 
For the example above, what is the interpolation factor when converting x to the final 
waveform? 



 
(e) In the case of the lighthouse image, you need to carry out a linear 

interpolation operation on both the rows and columns of the down-sampled 
image xx3. This requires two calls to Interpolate 1D.vi, because one call will only 
process all the columns of a matrix.10 Include your code for this part in the lab 
report. 

 
(f) Compare your interpolated image to the original image lighthouse. Comment 

on the visual appearance of the “reconstructed” image versus the original; point 
out differences and similarities. Can the reconstruction (i.e., zooming) process 
remove the aliasing effects from the down-sampled lighthouse image? 

 
(g) Compare the quality of the linear interpolation result to the zero-order hold 

result. Point out regions where they differ and try to justify this difference 
by estimating the local frequency content. In other words, look for regions 
of “low-frequency” content and “high-frequency” content and see how the 
interpolation quality is dependent on this factor. 

 
A couple of questions to think about: Are edges low frequency or high frequency 
features? Are the fence posts low frequency or high frequency features? Is the 
background a low frequency or high frequency feature? 
 

3.3 More Images in MATLAB (Optional) 
 
This section is included for those students who might want to relate these MATLAB 
operations to previous experience with software such as Photoshop. There are many 
image processing functions in MATLAB. For example, try the help command: 

help images 
for more information, but keep in mind that the Image Processing Toolbox may not be on 
your computer. 
 

3.3.1 Zooming in Software 
 
If you have used an image editing program such as Adobe’s Photoshop, you might have 
observed how well or how poorly image zooming (i.e., interpolation) is done. For 
example, if you try to blow up a JPEG file that you’ve downloaded from the web, the 
result is usually disappointing. Since MATLAB has the capability to read lots of different 
formats, you can apply the image zooming via interpolation to any photograph that you 
can acquire. The MATLAB function for reading JPEG images is imread( ) which would 
be invoked as follows: 
 

xx = imread(’foo.jpg’,’jpeg’); 
 

Since imread( ) is part of the image processing toolbox, this test can be done in the CoC 
computer labs, but may not be possible on your home computer. 
 



3.3.2 Warnings 
 
Images obtained from JPEG files might come in many different formats. Two precautions 
are necessary: 
 
1. If MATLAB loads the image and stores it as 8-bit integers, then MATLAB will use an 
internal data type called uint8. The function show img( ) cannot handle this format, but 
there is a conversion function called double( ) that will convert the 8-bit integers to 
double-precision floating-point for use with filtering and processing programs. 
 

yy = double(xx); 
 

You can convert back to 8-bit values with the function uint8(). 
 
2. If the image is a color photograph, then it is actually composed of three “image 
planes” and MATLAB will store it as a 3-D array. For example, the result of whos for a 
545 � 668 color image would give: 

Name   Size   Bytes   Class 
xx         545x668x3         1092180          uint8 array 
 

In this case, you should use MATLAB’s image display functions such as imshow( ) to 
see the color image. Or you can convert the color image to gray-scale with the function 
rgb2gray( ). 
 



Lab 06 
INSTRUCTOR VERIFICATION SHEET 

 
For each verification, be prepared to explain your answer and respond to other related 
questions that the lab TA’s or professors might ask. Turn this page in at the end of your 

lab period. 
 
 

Name: ___________________________   Date of Lab:____________ 
 
 
Part 2.1(c) Create a 400 � 400 image with 5 horizontal black bands separated by white 

bands. Write the LabVIEW code to make this image and display it. 
 

Verified: _______________  Date/Time:_____________ 
 
 

Part 2.3(a) Downsample the lighthouse image to see aliasing. Describe the aliasing, and 
where it occurs in the image. 
 

Verified: _______________  Date/Time:_____________ 
 


