DSP First
Lab 06: Digital Images: A/D and D/A

Pre-Lab and Warm-Up: You should read at least the Pre-Lab and Warm-up sections of
this lab assignment and go over all exercises in the Pre-Lab section before going to your
assigned lab session.

Verification: The Warm-up section of each lab must be completed during your assigned
Lab time and the steps marked Instructor Verification must also be signed off during the
lab time. One of the laboratory instructors must verify the appropriate steps by signing
on the Instructor Verification line. When you have completed a step that requires
verification, simply demonstrate the step to the TA or instructor. Turn in the completed
verification sheet to your TA when you leave the lab.

Lab Report: It is only necessary to turn in a report on Section 3 with graphs and
explanations. You are asked to label the axes of your plots and include a title for every
plot. In order to keep track of plots, include your plot inlined within your report. If you are
unsure about what is expected, ask the TA who will grade your report.

The objective in this lab is to introduce digital images as a second useful signal type. We
will show how the A-to-D sampling and the D-to-A reconstruction processes are carried
out for digital images. In particular, we will show a commonly used method of image
zooming (reconstruction) that gives “poor” results—a later lab will revisit this issue and
do a better job.

1 Pre-Lab

1.1 Digital Images

In this lab we introduce digital images as a signal type for studying the effect of
sampling, aliasing and reconstruction. An image can be represented as a function x(t,, t;)
of two continuous variables representing the horizontal (¢,) and vertical (¢;) coordinates
of a point in space.l For monochrome images, the signal x(t;, t;) would be a scalar
function of the two spatial variables, but for color images the function x(-, -) would have
to be a vector-valued function of the two variables.2 Moving images (such as TV) would
add a time variable to the two spatial variables.

Monochrome images are displayed using black and white and shades of gray, so they
are called grayscale images. In this lab we will consider only sampled gray-scale still
images. A sampled gray-scale still image would be represented as a two-dimensional
array of numbers of the form

x[m,n] = x(mT,,nT,) I<m<M,andl<n<N
where T; and T, are the sample spacings in the horizontal and vertical directions. Typical

values of Mand Nare 256 or 512; e.g., a 512x512 image which has nearly the same
resolution as a standard TV image. In LabVIEW we can represent an image as an array,

so it would consist of Mrows and Ncolumns. The array element at (m, n) is the sample
value x[m, n]—called a pixel (short for picture element).

An important property of light images such as photographs and TV pictures is
that their values are always non-negative and finite in magnitude; i.e.,

0<xmn]< X . <o

This is because light images are formed by measuring the intensity of reflected or
emitted light which must always be a positive finite quantity. When stored in a computer
or displayed on a monitor, the values of x[m, n] have to be scaled relative to a maximum
value X Usually an eight-bit integer representation is used. With 8-bit integers, the

maximum value (in the computer) would be X,..x = 2° — 1 =255, and there would be 2°
= 256 different gray levels for the display, from 0 to 255.

1.2 Displaying Images

As you will discover, the correct display of an image on a gray-scale monitor can be
tricky, especially after some processing has been performed on the image. We have
provided functions in the DSP First Toolbox to handle most of these problems,® but it will
be helpful if the following points are noted:

1. All image values must be non-negative for the purposes of display. Filtering may
introduce negative values, especially if differencing is used (e.g., a high-pass
filter).

2. The default format for most gray-scale displays is eight bits, so the pixel values
x[m,n] in the image must be converted to integers in the range

0 < x[m,n]<255=2%—1.

3. The actual display on the monitor is created by wiring a picture output to a picture
indicator. Because we are working with 8-bit images the color map in LabVIEW is
grayscale by default. The appearance of the image can be altered by running
using a different “color map.” There is a VI in the DSP First Toolkit called
“grayscale pixmap to RGB picture.vi” that allows you to change the color map. In
our case, we want “grayscale display” where all three primary colors (red, green
and blue, or RGB) are used equally, creating what is called a “gray map.” This
can be accomplished by wiring “grayscale array.vi” to the color map input.

This creates a linear mapping, so that each input pixel amplitude is rendered with
a screen intensity proportional to its value (assuming the monitor is calibrated).
For our lab experiments, non-linear color mappings would introduce an extra
level of complication, so they will not be used.

4. When the image values lie outside the range [0,255], or when the image is scaled
so that it only occupies a small portion of the range [0,255], the display may have
poor quality. In this lab, we will automatically rescale the image: This requires a
linear mapping of the pixel values:*

3 f you have the MATLAB Image Processing Toolbox, then the function imshow.m can be used instead.
* The MATLAB function show img has an option to perform this scaling while making the image display.

(M

2 Warm-up

The instructor verification sheet may be found at the end of this lab.

2.1 Synthesize a Test Image

In order to probe your understanding of the relationship between LabVIEW pixel arrays
and image display, you can generate a synthetic image from a mathematical formula.

(a) Generate a simple test image in which all of the columns are identical by using
the following outer product in a MathScript node.

Xpix=ones(256,1)*(256*(cos(2*pi*(0:255)/16)+1));

Display the image using the following code.

wpix=ones(256, 1 M 256*(cas(Z*pi* (0 255 160+ 100 bopi| ¥nBL]

grawvscale pixmap ko RiGE picture.vi|

i3 E -
o

RiGE

Explain the gray-scale pattern that you see. How wide are the bands in number
of pixels? How can you predict that width from the formula for xpix?

(b) In the previous part, which data value in xpix is represented by white? which one
by black?

(c) Explain how you would produce an image with bands that are horizontal. Give
the formula that would create a 400x400 image with 5 horizontal black bands
separated by white bands. Write the code to make this image and display it.

Instructor Verification (separate page)

2.3 Sampling of Images

Images that are stored in digital form on a computer have to be sampled images
because they are stored in an M x N array. The sampling rate in the two spatial
dimensions was chosen at the time the image was digitized (in units of samples per inch
if the original was a photograph). For example, the image might have been “sampled” by
a scanner where the resolution was chosen to be 300 dpi (dots per inch).7 If we want a
different sampling rate, we can simulate a lower sampling rate by simply throwing away
samples in a periodic way. For example, if every other sample is removed, the sampling
rate will be halved (in our example, the 300 dpi image would become a 150 dpi image).
Usually this is called sub-sampling or down-sampling.

Down-sampling throws away samples, so it will shrink the size of the image. This is what
is done by the following scheme:

wp = ww(l:p:end,1l:p:end);
when we are downsampling by a factor of p.

(&) One potential problem with down-sampling is that aliasing might occur. This can
be illustrated in a dramatic fashion with the lighthouse image.
Load the lighthouse.mat file which has the image stored in a variable called ww.
When you check the size of the image, you'll find that it is not square. Now down-
sample the lighthouse image by a factor of 2. What is the size of the down-
sampled image? Notice the aliasing in the downsampled image, which is

surprising since no new values are being created by the down-sampling process.
Describe how the aliasing appears visually.9 Which parts of the image show the
aliasing effects most dramatically?

3 Lab Exercises: Sampling, Aliasing, and Reconstruction

3.1 Down-Sampling

For the lighthouse picture, downsampled by two in the warm-up section:

(a) Describe how the aliasing appears visually. Compare the original to the
downsampled image. Which parts of the image show the aliasing effects most
dramatically?

(b) This part is challenging: explain why the aliasing happens in the lighthouse
image by using a “frequency domain” explanation. In other words, estimate the
frequency of the features that are being aliased. Give this frequency as a number
in cycles per pixel. (Note that the fence provides a sort of “spatial chirp” where
the spatial frequency increases from left to right.) Can you relate your frequency
estimate to the Sampling Theorem?

You might try zooming in on a very small region of both the original and downsampled
images.

3.2 Reconstruction of Images

When an image has been sampled, we can fill in the missing samples by doing
interpolation. For images, this would be analogous to the examples shown in Chapter 4
for sine-wave interpolation which is part of the reconstruction process in a D-to-A
converter. We could use a “square pulse” or a “triangular pulse” or other pulse shapes
for the reconstruction.

x[m.n]

.| Repeat Along Repeat Down | Y7l
coe ’ the Rows ° ™ the Columns ecnesse
o0e [] L] []

o9 L]

\ evnenne
REpEAT —— eccecce
SAMPLES
EXPANDED
Figure 1: 2-D Interpolation broken down into row and column operations: the gray dots

indicate repeated data values created by a zero-order hold; or, in the case of linear
interpolation, they are the interpolated values.

For these reconstruction experiments, use the lighthouse image, down-sampled by a
factor of 3 (similar to what you did in Section 2.3). You will have to generate this by

loading in the image to the array xx. A down-sampled lighthouse image should be
created and stored in the variable xx3. The objective will be to reconstruct an
approximation to the original 1ighthouse image, which is 256 [1256, from the smaller

down-sampled image.

(@)

(b)

(€)

The simplest interpolation would be reconstruction with a square pulse which
produces a “zero-order hold.” Here is a method that works for a one-dimensional
signal (i.e., one row or one column of the image), assuming that we start with a
row vector xrl, and the result is the row vector xr1hold.

xrl = (-2).7(0:6);

L = length(xrl);

nn = ceil((0.999:1:4*L)/4);%<-- Round up to the integer part
xrlhold = xrl(nn) ;

Plot the vector xr1hold to verify that it is a zero-order hold version derived from
Xxrl. Explain what values are contained in the indexing vector nn. If xr1hold is
treated as an interpolated version of xr1, then what is the interpolation factor?
Your lab report should include an explanation for this part, but plots are
optional—use them if they simplify the explanation.

Now return to the down-sampled 1ighthouse image, and process all the rows
of xx3 to fill in the missing points. Use the zero-order hold idea from part (a), but
do it for an interpolation factor of 3. Call the result xholdrows. Display
xholdrows as an image, and compare it to the downsampled image xx3;
compare the size of the images as well as their content.

Now process all the columns of xholdrows to fill in the missing points in each
column and and call the result xhold. Compare the result (xhold) to the original
image lighthouse. Include your code for parts (b) and (c) in the lab report.

(d) Linear interpolation can be done in LabVIEW using Interpolate 1D.vi.

When unsure about a command, use help.

Its default mode is linear interpolation, but it can also do other types of polynomial
interpolation. Here is an example on a 1-D signal:

Interpolate 10.vi | ftem Plat
Tl R s |
Interp

id

For the example above, what is the interpolation factor when converting x to the final
waveform?

(e) In the case of the lighthouse image, you need to carry out a linear
interpolation operation on both the rows and columns of the down-sampled
image xx3. This requires two calls to Interpolate 1D.vi, because one call will only
process all the columns of a matrix.10 Include your code for this part in the lab
report.

() Compare your interpolated image to the original image 1ighthouse. Comment
on the visual appearance of the “reconstructed” image versus the original; point
out differences and similarities. Can the reconstruction (i.e., zooming) process
remove the aliasing effects from the down-sampled lighthouse image?

(g) Compare the quality of the linear interpolation result to the zero-order hold
result. Point out regions where they differ and try to justify this difference
by estimating the local frequency content. In other words, look for regions
of “low-frequency” content and “high-frequency” content and see how the
interpolation quality is dependent on this factor.

A couple of questions to think about: Are edges low frequency or high frequency
features? Are the fence posts low frequency or high frequency features? Is the
background a low frequency or high frequency feature?

I
|

Lab 06
INSTRUCTOR VERIFICATION SHEET

For each verification, be prepared to explain your answer and respond to other related
guestions that the lab TA'’s or professors might ask. Turn this page in at the end of your
lab period.

Name: Date of Lab:

Part 2.1(c) Create a 400 1400 image with 5 horizontal black bands separated by white
bands. Write the LabVIEW code to make this image and display it.

Verified: Date/Time:

Part 2.3(a) Downsample the lighthouse image to see aliasing. Describe the aliasing, and
where it occurs in the image.

Verified: Date/Time:

