
DSP First, 2e Signal Processing First

Lab P-10: Edge Detection in Images: UPC Decoding

Pre-Lab: Read the Pre-Lab and do all the exercises in the Pre-Lab section prior to attending lab.

Verification: The Warm-up section of each lab should be completed during your assigned Lab time and
the steps marked Instructor Verification signed off during the lab time. One of the laboratory instructors
must verify the appropriate steps by signing on the Instructor Verification line. When you have completed
a step that requires verification, demonstrate the step to your instructor. Turn in the completed verification
sheet before you leave the lab.

Lab Report: Write a full report on Section 3 with graphs and explanations. A best practice is to label the
axes of your plots and include a title for every plot. In order to keep track of plots, include each plot inlined
within your report. If you are unsure about what is expected, ask the instructor who will grade your report.

1 Pre-Lab

Please read through the information below prior to attending your lab.

1.1 Objective

The goal of this lab is to learn how to implement FIR filters in MATLAB, and then study the response of FIR
filters to various signals, including images or speech.

1. In the experiments of this lab, you will use the MATLAB GUI called dconvdemo to study first-
difference filters and the convolution of rectangular pulses. This is exactly the same as the MATLAB

functions conv() If you have installed the SP-First or (DSP-First) Toolbox, you will already have
this demo on the matlabpath.

2. You will also use firfilt, or conv(), to implement 1-D filters and conv2() to implement two-
dimensional (2-D) filters. The 2-D filtering operation actually consists of 1-D filters applied to all the
rows of the image and then all the columns.

1.2 Overview of FIR Filtering

For this lab, we will define an FIR filter as a discrete-time system that converts an input signal xŒn� into an
output signal yŒn� by means of the weighted summation formula:

yŒn�D

MX
kD0

bk xŒn�k� (1)

Equation (1) gives a rule for computing the nth value of the output sequence from present and past values of
the input sequence. The filter coefficients fbkg are constants that define the filter’s behavior. As an example,
consider the system for which the output values are given by

yŒn� D 1
3
xŒn�C 1

3
xŒn�1�C 1

3
xŒn�2� (2)

D
1
3 fxŒn�CxŒn�1�CxŒn�2�g

McClellan, Schafer, and Yoder, DSP First, 2e, ISBN 0-13-065562-7.
Prentice Hall, Upper Saddle River, NJ 07458. c
2015 Pearson Education, Inc.

1 McClellan, Schafer and Yoder, Signal Processing First.
Prentice Hall, Upper Saddle River, New Jersey, 2003. c
2003 Prentice Hall.

This equation states that the nth value of the output sequence is the average of the nth value of the input
sequence xŒn� and the two preceding values, xŒn� 1� and xŒn� 2�. For this example, the bk’s are all the
same: b0 D

1
3

, b1 D
1
3

, and b2 D
1
3

.
MATLAB has two built-in functions, conv() and filter(), for implementing the operation in (1), and

the SP-First (or DSP-First) toolbox supplies another M-file, called firfilt(), for the special case of FIR
filtering. The function filter implements a wider class of filters than just the FIR case. Technically speak-
ing, both the conv and the firfilt function implement the operation called convolution. The following
MATLAB statements implement the three-point averaging system of (2):

nn = 0:99;
xx = cos(0.08*pi*nn);
bb = [1/3 1/3 1/3];
yy = firfilt(bb, xx);

%<--Time indices
%<--Input signal (example)
%<--Filter coefficients
%<--Compute the output

In this case, the input signal xx is contained in a vector defined by the cosine function. In general, the vector
bb contains the filter coefficients fbkg needed in (1). The bb vector is defined in the following way:

bb = [b0, b1, b2, ... , bM]:

In MATLAB, all sequences have finite length because they are stored in vectors. If the input signal has
L nonzero samples, we would normally store only the L nonzero samples in a vector, and would assume
that xŒn� D 0 for n outside the interval of L samples, i.e., don’t store any zero samples unless it suits our
purposes. If we process a finite-length signal through (1), then the output sequence yŒn� will be longer than
xŒn� by M samples. Whenever firfilt() implements (1), we will find that

length(yy) = length(xx)+length(bb)-1

In the experiments of this lab, you will use firfilt() to implement FIR filters and begin to understand
how the filter coefficients define a digital filtering algorithm. In addition, this lab will introduce examples to
show how a filter reacts to different frequency components in the input.

1.3 Unit-Step Notation

The unit step signal is very handy for defining finite-length signals. Recall the definition of uŒn�

(unit-step signal) uŒn�D

(
1 n� 0

0 n < 0
(3)

The unit-step signal makes a transition from zero to one at nD 0. A shifted unit-step signal such as uŒn�d�
makes the transition at nD d . Thus, if we want to define a signal that is one for 0� n < L, then we write

uŒn��uŒn�L�D

(
1 0� n� L�1

0 n < 0 or n� L

This notation is used everywhere in dconvdemo to denote finite-length signals.

1.4 Discrete-Time Convolution Demo GUI

This lab involves the use of a MATLAB GUI for convolution of discrete-time signals, dconvdemo. This
GUI illustrates convolution which is the same operation done in the MATLAB functions conv() and firfilt()
used to implement FIR filters. This demo is part of the SP-First (or DSP-First) Toolbox. In this demo, you
can select an input signal xŒn�, as well as the impulse response of the filter hŒn�. Then the demo shows the

McClellan, Schafer, and Yoder, DSP First, 2e, ISBN 0-13-065562-7.
Prentice Hall, Upper Saddle River, NJ 07458. c
2015 Pearson Education, Inc.

2 McClellan, Schafer and Yoder, Signal Processing First.
Prentice Hall, Upper Saddle River, New Jersey, 2003. c
2003 Prentice Hall.

Figure 1: Interface for discrete-time convolution GUI called dconvdemo. This particular case is the con-
volution of a three-point averager with a ten-point rectangular pulse.

sliding window view of FIR filtering, where one of the signals must be flipped and shifted along the axis
when convolution is computed. Figure 1 shows the interface for the dconvdemo GUI.
In the pre-lab, you should perform the following steps with the dconvdemo GUI.

(a) Click on the Get x[n] button and set the input to a finite-length pulse: xŒn�D .uŒn��uŒn�10�/.
Note the length of this pulse, as well as the start and end points of the signals.

(b) Set the filter to a three-point averager by using the Get h[n] button to create the correct impulse
response for the three-point averager. Remember that the impulse response is identical to the bk’s for
an FIR filter. Also, the GUI allows you to modify the length and values of the pulse.

(c) Observe that the GUI produces the output signal in the bottom panel.

(d) When you move the mouse pointer over the index “n” below the signal plot and do a click-hold, you
will get a hand tool that allows you to move the “n”-pointer to the left or right; or you can use the left
and right arrow keys. By moving the pointer horizontally you can observe the sliding window action
of convolution. You can even move the index beyond the limits of the window and the plot will scroll
over to align with “n.”

1.5 Filtering via Convolution

You can perform exactly the same convolution as done by the dconvdemo GUI if you use the MATLAB

function firfilt, or conv. For ECE-2026, the preferred function is firfilt.

(a) During the Pre-Lab, you should do some filtering with a three-point averager. The filter coefficient
vector for the three-point averager is defined via:

bb = 1/3*ones(1,3);

Use firfilt to process an input signal that is a length-10 pulse:

xŒn�D

(
1 for nD 0;1;2;3;4;5;6;7;8;9
0 elsewhere

McClellan, Schafer, and Yoder, DSP First, 2e, ISBN 0-13-065562-7.
Prentice Hall, Upper Saddle River, NJ 07458. c
2015 Pearson Education, Inc.

3 McClellan, Schafer and Yoder, Signal Processing First.
Prentice Hall, Upper Saddle River, New Jersey, 2003. c
2003 Prentice Hall.

Note: in MATLAB indexing can be confusing. Our mathematical signal definitions start at n D 0,
but MATLAB starts its indexing at “1”. Nevertheless, we can ignore the difference and pretend that
MATLAB is indexing from zero, as long as we don’t try to write x[0] in MATLAB.
The statement xx = [ones(1,10),zeros(1,5)] generates a length-10 pulse and put it inside of a
longer vector. This produces a vector of length 15, which has 5 extra zero samples appended.

(b) To illustrate the filtering action of the three-point averager, it is informative to make a plot of the input
signal and output signal together. Since xŒn� and yŒn� are discrete-time signals, a stem plot is needed.
One way to put the plots together is to use subplot(2,1,*) to make a two-panel display:

nn = first:last; %--- use first=1 and last=length(xx)
subplot(2,1,1);
stem(nn-1,xx(nn))
subplot(2,1,2);
stem(nn-1,yy(nn),’filled’) %--Make black dots
xlabel(’Time Index (n)’)

This code assumes that the output from firfilt is called yy. Try the plot with first equal to the
beginning index of the input signal, and last chosen to be the last index of the input. In other words,
the plotting range for both signals will be equal to the length of the input signal, even though the
output signal is longer. Notice that using nn-1 in the two calls to stem() causes the x-axis to start at
zero in the plot.

(c) Explain the filtering action of the three-point averager by comparing the plots in the previous part.
This averaging filter might be called a “smoothing” filter, especially when we see how the transitions
in xŒn� from zero to one, and from one back to zero, have become “smooth ramps.”

2 Warm-up

2.1 Discrete-Time Convolution

In this section, you will generate filtering results for commonly used simple FIR filters. Some of these will
be needed in a later section. Use the discrete-time convolution GUI, dconvdemo, to do the following:

(a) The convolution of two impulses, ıŒn�3�� ıŒn�5�.

(b) Filter the input signal xŒn�D .�3/fuŒn�2��uŒn�8�g with a first-difference filter.

yŒn�D xŒn��xŒn�1�

Make xŒn� by selecting the “Pulse” signal type from the drop-down menu within Get x[n], and
also use the text box “Delay.”
Next, set the impulse response to match the filter coefficients of the first-difference. Enter the impulse
response values by selecting “User Signal” from the drop-down menu within Get h[n]. Illustrate
the output signal yŒn� and write a simple formula for yŒn� which should use only two impulses.

(c) Explain why yŒn� from the previous part is zero for almost all n.

Instructor Verification (separate page)

(d) Convolve two rectangular pulses: one with an amplitude of 2 and a length of 7, the other with an
amplitude of 3 and a length of 4. Make a sketch of the output signal, showing its starting and ending
points, as well as its maximum amplitude.

McClellan, Schafer, and Yoder, DSP First, 2e, ISBN 0-13-065562-7.
Prentice Hall, Upper Saddle River, NJ 07458. c
2015 Pearson Education, Inc.

4 McClellan, Schafer and Yoder, Signal Processing First.
Prentice Hall, Upper Saddle River, New Jersey, 2003. c
2003 Prentice Hall.

(e) State the length and maximum amplitude of the convolution result from the previous part.

Instructor Verification (separate page)

(f) The first-difference filter can be used to find the edges in a signal or in an image. This behavior
can be exhibited with the dconvdemo GUI. Set the impulse response hŒn�D ıŒn�� ıŒn�1�. In order
to set the input signal xŒn�, use the User Input option to define xŒn� via the MATLAB statement
double((sin(0.5*(0:50))+0.2)<0), which uses the logical operator “less than” to make a signal
that has runs of zero and ones.
The output from the convolution yŒn� will have only a few nonzero values. Record the locations of the
nonzero values, and explain how these are related to the transitions in the input signal. Also, explain
why some values of yŒn� are positive, and others are negative.

Instructor Verification (separate page)

2.2 Filtering Images via Convolution

One-dimensional FIR filters, such as running averagers and first-difference filters, can be used to process
one-dimensional signals such as speech or music. These same filters can be applied to images if we regard
each row (or column) of the image as a one-dimensional signal. For example, the 50th row of an image is
the N -point sequence xx[50,n] for 1� n�N , so we can filter this sequence with a 1-D filter using the
conv or firfilt operator, e.g., to filter the m0-th row:

y1Œm0;n�D xŒm0;n��xŒm0;n�1�

(a) Load in the image echart.mat (from the SP-First Toolbox) with the load command. This will
create the variable echart whose size is 257� 256. We can filter one row of the image by applying
the conv() function to one row extract from the image, echart(m,:).

bdiffh = [1, -1];
yy1 = conv(echart(m,:), bdiffh);

Pick a row where there the are several black-white-black transitions, e.g., choose row number 65, 147,
or 221. Display the row of the input image echart and the filtered row yy1 on the screen in the same
figure window (with subplot. Compare the two stem plots and give a qualitative description of what
you see. Note that the polarity (positive/negative) of the impulses will denote whether the transition
is from white to black, or black to white. Then explain how to calculate the width of the “E” from the
impulses in the stem plot of the filtered row.
Note: Use the MATLAB function find to get the locations of the impulses in the filtered row yy1.

Instructor Verification (separate page)

3 Lab: FIR Filtering of Images

FIR filters can produce many types of special effects, including:

1. Edge Detection: a first-difference FIR filter will have zero output when the input signal is constant,
but a large output when the input changes, so we can use such a filter to find edges in an image.

2. Echo: FIR filters can produce echoes and reverberations because the filtering formula (1) contains
delay terms. In an image, such phenomena would be called “ghosts.”

3. Deconvolution: one FIR filter can (approximately) undo the effects of another—we will investigate a
cascade of two FIR filters that distort and then restore an image. This process is called deconvolution.

McClellan, Schafer, and Yoder, DSP First, 2e, ISBN 0-13-065562-7.
Prentice Hall, Upper Saddle River, NJ 07458. c
2015 Pearson Education, Inc.

5 McClellan, Schafer and Yoder, Signal Processing First.
Prentice Hall, Upper Saddle River, New Jersey, 2003. c
2003 Prentice Hall.

In the following sections, we will study how an FIR filter can perform Edge Detection as a pre-processing
step for measuring the widths of black bars found in the UPC bar codes.

3.1 Finding Edges: 1-D Filter Cascaded with a Nonlinear Operators

More complicated systems are often made up from simple building blocks. In the system of Fig. 2, a 1-D
FIR filter processes one or more rows; then a second system does detection by using a threshold on the
absolute value of the filtered output. If the input row xŒm0;n� is very “blocky” with transitions between two
levels, then the output signal, dŒm0;n�, should be very sparse—mostly zero with only a few nonzero values.
In other words, dŒm0;n� can be written as the sum of a small number of shifted deltas (impulses). The
locations of the impulses correspond to transitions in the input signal from one level to another. In MATLAB

the find function can extract the locations and produce an output signal `Œm0;n� that is dense, i.e., no zeros,
because a value like `Œm0;5� is the location of the fifth impulse in dŒm0;n� which is a positive integer.

- - - -FIR Filter
on Row(s)

Threshold
Operator

Convert to
Locations

xŒm0;n� yŒm0;n� d Œm0;n� `Œm0;n�

Figure 2: Using an FIR system plus a threshold operator to detect and locate edges, i.e., transitions.

3.1.1 Edge Detection and Location via 1-D Filters

Use the function firfilt() to implement the “first-difference” FIR filter: yŒn� D xŒn�� xŒn� 1� on the
input signal xŒn� defined via the MATLAB statement:

xx = 255*(rem(1:159,30)>19);

Doing the first-difference filter in MATLAB requires that you define the vector of filter coefficients bb needed
for firfilt.

(a) Plot both the input and output waveforms xŒn� and yŒn� on the same figure, using subplot. Make the
discrete-time signal plots with MATLAB’s stem function.

(b) Explain why the output appears the way it does by writing an explicit mathematical formula for the
output signal. In other words, justify the effect of the first-difference operator on this input signal.

(c) Note that yŒn� and xŒn� are not the same length. Determine the length of the filtered signal yŒn�, and
explain how its length is related to the length of xŒn� and the length of the FIR filter.

(d) The edges in a 1-D signal such as xx are the transitions. If you need an indicator for the edges, then
you must define an additional system whose output is 1 (true) at the “exact” edge location, and 0
(false) otherwise. For example,

dŒn�D

(
Edge true if jyŒn�j � �
Edge false if jyŒn�j< �

Determine an appropriate value of the threshold � to get the edges. In MATLAB use the abs function
along with a logical operator (such as > or <) to define this thresholding system that gives a “TRUE”
binary output for the edges, with yŒn� as the input to this thresholding system.

McClellan, Schafer, and Yoder, DSP First, 2e, ISBN 0-13-065562-7.
Prentice Hall, Upper Saddle River, NJ 07458. c
2015 Pearson Education, Inc.

6 McClellan, Schafer and Yoder, Signal Processing First.
Prentice Hall, Upper Saddle River, New Jersey, 2003. c
2003 Prentice Hall.

(e) Use MATLAB’s find function to produce a shorter signal that contains the edge locations; make a
stem plot of this “signal,” and determine its length.
NOTE: you will mark only one side of the transition as true when you threshold the output of the
first-difference filter. Is it located before or after the transition?

3.2 Bar Code Detection and Decoding

A 12-digit bar code consists of alternating black and white bars; the white bars appear to be spaces. The
UPC (Universal Product Code) uses widths of the bars to encode numbers. There are four widths that are
integer multiples of the thinnest black bar, or thinnest white space. Thus, we define a 3-wide black bar as
three times as wide as the thinnest black bar; likewise, for 2-wide and 4-wide bars—whether black or white.
Look at any bar code, and you should be able to identify the four widths.

Each number from 0 to 9 is encoded with a quadruplet. Here is the encoding of the digits 0–9:

0 = 3-2-1-1 5 = 1-2-3-1
1 = 2-2-2-1 6 = 1-1-1-4
2 = 2-1-2-2 7 = 1-3-1-2
3 = 1-4-1-1 8 = 1-2-1-3
4 = 1-1-3-2 9 = 3-1-1-2

For example, the code for the number “5” is 1-2-3-1, meaning it could be a one-unit wide white space,
followed by a 2-wide black bar, followed by a 3-wide white space, and finally a 1-wide black bar (or
inverted: 1-wide black, 2-wide white, 3-wide black, and 1-wide white).

The UPC (Universal Product Code) consists of twelve digits delimited on each end by 1-1-1 (black-
white-black), and separated in the middle (between the sixth and seventh digit) by white-black-white-black-
white (1-1-1-1-1). Thus the entire UPC must have 30 black bars and 29 white bars for a total of 59. Fur-
thermore, note that the encoding for each digit always adds up to seven so the total width of the bar code
is always the same. In terms of the unit width where the thinnest bars have width one, it should be easy to
determine that the total width of the UPC bar code is 95 units.1

3.2.1 Decode the UPC from a Scanned Image

Follow the steps below to develop the processing needed to decode a typical bar code from a scanned image.
A decoder for the final step is provided as a MATLAB p-code file (called decodeUPC.p). The data files and
the decoder for the lab are available from a ZIP file.

(a) Read the image HP110v3.png into MATLAB with the imread function. Extract one row (in the
middle) to define a 1-D signal xŒn� in the MATLAB vector xn for processing.

(b) Filter the signal xŒn� with a first-difference FIR filter; call the output yŒn�. Make a stem plot of the
input and output signals, using a subplot to show both in the same figure window.

(c) Create a sparse detected signal dŒn� by comparing the magnitude jyŒn�j to a threshold. Then convert
the sparse signal dŒn� into a location signal `Œn� by using the find function to extract locations. Make
a stem plot of the location signal, `Œn�.
Note: The length of the location signal must be greater than or equal to 60, if the rest of the processing
is going to succeed.

(d) Apply a first-difference filter to the location signal; call the output �Œn�. These differences should be
the widths of the bars. Make a stem plot of �Œn�, and put this plot and the previous one of `Œn� in the
same figure window by using subplot. Explain how the plot of �Œn� conveys the idea that there are
(approximately) four different widths in the bar code.

1For an example, see http://electronics.howstuffworks.com/gadgets/high-tech-gadgets/upc3.htm.

McClellan, Schafer, and Yoder, DSP First, 2e, ISBN 0-13-065562-7.
Prentice Hall, Upper Saddle River, NJ 07458. c
2015 Pearson Education, Inc.

7 McClellan, Schafer and Yoder, Signal Processing First.
Prentice Hall, Upper Saddle River, New Jersey, 2003. c
2003 Prentice Hall.

(e) One problem with the idea of having four widths is that the width of the thinnest bar may not be an
integer number of pixels. For example, when the basic width is 3.5, we would expect the plot of �Œn�
to jump between 3 and 4 for 1-wide bars. Such variation will complicate the final decoding, so it is
important to estimate the basic width .�1/ of the thinnest bar, and use that to fix �Œn�.

First of all, prove that the total width of a valid 12-digit bar code is equal to 95�1. Write a logical
argument to justify this total width.

(f) Next, use the fact that a valid bar code has 59 bars to derive a simple method to estimate �1 from the
signal�Œn�. Since the length of�Œn� will generally be greater than 59, it will be necessary to perform
this estimate for every subset of length 59.
Note: The method for estimating �1 could also be based on the signal `Œn�.

(g) Using your estimate of �1 from the previous part, convert the values of �Œn� into relative sizes by
dividing by �1 and rounding. The result should be integers that are equal to 1, 2, 3 or 4, assuming you
are analyzing a valid bar code.

(h) Now you are ready to perform the decoding to digits. A p-code function decodeUPC is provided for
that purpose. It takes one input vector that has to be a length-59 vector of integers, i.e., the output
of the previous part. The function decodeUPC has one output which should be a vector of twelve
single-digit numbers, if the decoder does not detect an error. When there is an error the output may
be partially correct, but the incorrect decodes will be indicated with a -1.

(i) For the test image HP110v3.png the correct answer is known because it is included at the bottom of
the barcode. Check your result.

(j) Another image must also be processed; OFFv3.png. In this case, the scan is a bit skewed and the
answer is not known. Process this image to extract its UPC from the bar code. The estimate of �1 will
be different for this case.

Final Comment: Include all images and plots for the previous parts to support your discussions in the lab
report.

Application: Iris Recognition Biometrics refers to the use of innate
human features for identification, e.g., fingerprints. Often a biometric
feature requires significant signal processing to be reduced to a simple
ID code. One quick biometric is Iris Recognitiona in which the patterns
in the colored part of the eye are encoded and used to verify a person’s
identity. The first step in this system is isolating the iris by finding its
boundaries. The figure shows a typical image that would have to be
processed. The small amount of glare from the lighting of the photo
evident on both sides of the pupil makes the processing harder.

aJ.Daugman, “Statistical Richness of Visual Phase Information: Update on Recog-
nizing Persons by Iris Patterns,” International Journal of Computer Vision, 2001.

Image of an eye showing the iris re-
gion bounded by the pupil, eyelids
and the white region of the eye.

McClellan, Schafer, and Yoder, DSP First, 2e, ISBN 0-13-065562-7.
Prentice Hall, Upper Saddle River, NJ 07458. c
2015 Pearson Education, Inc.

8 McClellan, Schafer and Yoder, Signal Processing First.
Prentice Hall, Upper Saddle River, New Jersey, 2003. c
2003 Prentice Hall.

Lab: Edge Detection in Images: UPC Decoding
INSTRUCTOR VERIFICATION SHEET

Turn this page in to your lab grading TA before the end of your scheduled Lab time.

Name: LoginUserName: Date:

Part Observations (Write down answers for each part)

2.1(a) Convolve impulses: ıŒn�3�� ıŒn�5�D write formula

2.1(b) Rectangular Pulse through a First-Difference filter: yŒn�D write formula for output signal

2.1(c) Explain why yŒn� is zero for most values of n.

Verified: Date/Time:
2.1(d) Convolve two rectangles, sketch result; make sure you have the correct beginning and end!

2.1(e) Maximum Amplitude and Length of the convolved-rectangles output.

Verified: Date/Time:
2.1(f) List the index locations .n/ of the transitions in the output signal, yŒn�

2.1(f) Explain polarity (positive/negative) of the transitions in the output signal, yŒn�

Verified: Date/Time:

Part 2.2(a) Process one row of the input image echart with a 1-D first-difference filter. Explain how the
output from the filter makes it easy to measure the width of black regions. Use MATLAB’s find function to
help in determining the width of the black “E” from the impulses in the first-difference output signal.

Verified: Date/Time:

McClellan, Schafer, and Yoder, DSP First, 2e, ISBN 0-13-065562-7.
Prentice Hall, Upper Saddle River, NJ 07458. c
2015 Pearson Education, Inc.

9 McClellan, Schafer and Yoder, Signal Processing First.
Prentice Hall, Upper Saddle River, New Jersey, 2003. c
2003 Prentice Hall.

