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DSP First, 2e Signal Processing First
Lab S-5: DLTI GUI and Nulling Filters

Pre-Lab: Read the Pre-Lab and do all the exercises in the Pre-Lab section prior to attending lab.

Verification: The Exercise section of each lab should be completed during your assigned Lab time and
the steps marked Instructor Verification signed off during the lab time. When you have completed a step
that requires verification, demonstrate the result to your instructor and answer any questions about it. Turn
in the completed verification sheet before you leave the lab.

Lab Homework Questions: The Lab-Homework Sheet has a few lab related questions that can be answered
at your own pace. The completed Lab-HW sheet is due at the beginning of the next lab.

1 Pre-Lab

Please read through the information below prior to attending your lab.

1.1 Objective

The goal of this lab is to study the sinusoidal response of some simple FIR filters in MATLAB. This leads to
a study of the frequency response function.

1. In the experiments of this lab, you will use the MATLAB GUI called d1tidemo to display and evaluate
the frequency response function for FIR filters. If you have installed the SP-First (or DSP-First)
Toolbox, you will already have this demo on the matlabpath.

2. You will also study the Sinusoid-In Gives Sinusoid-Qut property of LTI systems.

1.2 Overview

The goal of this lab is to study the frequency response. For FIR filters this is the response to inputs such
as complex exponentials and sinusoids. Although you can use firfilt (), or conv (), to implement filters
in the time domain, the function freqz () is used to characterize the filter in the frequency domain via its
frequency response.' As a result, you will learn how to obtain the output when the input is a sum of sinusoids
because the frequency response characterizes a filter by telling how the filter responds to different frequency
components in the input.

1.3 Frequency Response of FIR Filters

The output or response of a filter for a complex sinusoid input, e’ bn s a complex exponential at the
same frequency. The magnitude and phase of the output will be different, and that change depends on
the frequency, @. The dependence of these magnitude and phase changes versus frequency is called the
frequency response. In effect, the filter is described by how it affects different input frequencies. For
example, the frequency response of the two-point averaging filter

yln] = %x[n] + %x[n —1]

g you do not have the function freqz.m, there is a substitute available called freekz.min the SP-First (or DSP-First) Toolbox.
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can be found by using a general complex exponential as an input x[n] and observing the output or response.

x[n] = Ael (@1 +¢) (1a)

yn] = %Aej(d)”+<.0)+%Aej(a3(n—1)+<ﬂ) (1b)

_ Aol @n+o) <%+%e—jc?>) (lc)
————

H (@), function of @

In (1c) there are two terms, the original input, and a term that is a function only of @. This second term is
the frequency response and it is commonly denoted? by H(e/).

H(e/®) =H@) =1 (1+ e—f‘?’) )

The general form of the frequency response for an M -th order FIR linear time-invariant system with filter

coefficients {by } is
M

H(e!®) =) bye 1ok 3)
k=0

Once the frequency response, H (e’ ‘;’), has been determined, the effect of the filter on any complex
exponential input may be determined by evaluating H (e’ ‘?’) at the corresponding input frequency. The
output signal, y[n], is also a _complex exponential whose complex amplitude has a constant magnitude and
phase. The phase of H (e/“’) describes the phase change of the complex sinusoid and the magnitude of
H (e/®) describes the “gain” applied to the complex sinusoid.

1.3.1 MATLAB Function for Frequency Response

MATLAB has a built-in function for computing the frequency response of a discrete-time LTI system. The
following MATLAB statements show how to use freqz to compute and plot both the magnitude (absolute
value) and the phase of the frequency response of a two-point averaging system as a function of @ in the
range —m < ® < 7

bb = [0.5, 0.5]; %$—— Filter Coefficients
w = -pi: (pi/100) :pi; %-— omega hat frequency vector
H = freqgz(bb, 1, ww); $<——freekz (bb,1,ww) 1s an alternative

subplot (2,1,1);

plot (ww, abs(H)), grid on

subplot (2,1,2);

plot (ww, angle(H)), grid on

xlabel ("Normalized Radian Frequency’)
For FIR filters, the second argument of freqz ( _, 1, _ ) mustalways be equal to 1. The frequency vector
ww should cover an interval of length 27 for @, and its spacing must be fine enough to give a smooth curve
for H (e’ “A’). Note: we always use capital H for the frequency response.>

1.4 Periodicity of the Frequency Response

The frequency responses of discrete-time filters are always periodic with period equal to 2. Explain why
this is the case by using the definition of the frequency response (3) and then considering two input sinusoids

2The notation H (ej ‘2’) is used in place of H(®) for the frequency response because we will eventually connect this notation
with the z-transform, H(z), in later chapters.

3If the output of the freqz function is not assigned, then plots are generated automatically; however, the magnitude is given in
decibels which is a logarithmic scale. For linear magnitude plots a separate call to plot is necessary.
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whose frequencies are @ and @ + 27.

—cJon _ Jj(@+2m)n

x1[n] versus x2([n]

It should be easy to prove that x2[n] = x;[n]. Consult Chapter 6 for a mathematical proof that the outputs
from each of these signals are identical. The implication of periodicity is that a plot of H(e/®) only has
to be made over the interval —7 < ® < 7.

1.5 Frequency Response of the Four-Point Averager
In Chapter 6 we examined filters that compute the average of input samples over an interval. These filters are
called “running average” filters or “averagers” and they have the following form for the L-point averager:

L—l

yinl = Z xX[n—k] )

(a) Use Euler’s formula and complex number manipulations to show that the frequency response for the
4-point running average operator can be written as:

&)

H(eI®) = 1(@) = (2“’8(0'5‘”) * 2“’5(1'5“))) ¢TI0 = € (()eT V@

4

(b) Implement (5) directly in MATLAB. Use a vector that includes 400 samples covering the interval
[—m, ) for @. Make plots of C(®w) and ¥ (&) versus @. It is tempting to think that C(®) is the
magnitude of the frequency response, but C (@) can go negative, so these are not plots of the magnitude
and phase. You would have to use abs () and angle () to extract the magnitude | H (e’ ‘5)| and phase
ZH(el?) of the frequency response for plotting.

(¢) In this part, use freqz.mor freekz.min MATLAB to compute H (e/ @) numerically (from the filter
coefficients) and plot its magnitude and phase versus @. Write the appropriate MATLAB code to plot
both the magnitude and phase of H (e’ ‘?’). Follow the example in Section 1.3.1. The filter coefficient
vector for the 4-point averager is defined via:

bb = 1/4*ones (1,4);

Recall that the function freqz (bb, 1, ww) evaluates the frequency response for all frequencies in the
vector ww. It uses the summation in (3), not the formula in (5). The filter coefficients are defined in
the assignment to vector bb. How do your results compare with part (b)?

Note: the plots should not be identical, but you should be able to explain why they are equivalent by
converting the minus sign in the negative values of C(®) to a phase of 7 radians, which then modifies
the phase plot with jumps of + radians.

1.6 FIR Nulling Filters

A simple second-order FIR filter can be used to remove a sinusoid from an input signal. The general form
for the filter coefficients of an FIR nulling filter is

b() =1 b] - —2COS((I)NULL) bz =1 (6)

Nulling means that the frequency response is zero at @ = @yyrL. With dyyr = 0.757, enter the filter
coefficients in the d1tidemo GUI to see the frequency response; verify that it is zero at @ = 0.757. In
addition, define the input to be x[n] = 0.4 4 1.5co0s(0.757n) and observe that the sinusoidal component is
not present in the output.
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1.7 1Ideal Filters and Practical Filters

Ideal Filters are given by a frequency response, consisting of perfect passbands and stopbands. These are

not actually FIR filters because there is no finite set of filter coefficients that can produce the ideal fre-
quency response. In the d1tidemo GUI, you can choose ideal lowpass filters (LPF), highpass filters
(HPF) and bandpass filters (BPF).
The ideal LPFs and HPFs have one parameter for the cutoff frequency which determines the bound-
ary between the ideal passband and the ideal stopband. The ideal BPF has a parameter for center
frequency which determines where the band is located; its bandwidth (in this GUI) is always 0.4r.
All the ideal filters have an additional parameter for the slope of the phase of H (e’ ‘?’).

(a) Use the d1tidemo to view the sinusoid-in gives sinusoid-out behavior of an ideal bandpass filter
(BPF). Choose the center frequency to be 0.47. Then the two bandedge frequencies for the BPF
are @y = 0.27 and @, = 0.67r. These bandedges define the extent of the ideal passband of the
BPFE.

(b) Set the input to be x[n] = 1.5+ 0.9cos(0.55wn). Determine which frequency components are
present in the output signal.

(c) You can also include an ideal linear phase in the frequency response, so choose the phase slope
as —2. Then find the output for the same input as in the previous part. Describe how the output
has changed; relate the delay in the output to the phase slope of the frequency response.

(d) When the input is x[n] = 1.5+ 0.9cos(0.657n), determine the output. Explain why it is zero.

Practical Filters which are approximations to the ideal filters by length-L FIR filters. The ones shown
in d1tidemo were designed using MATLAB’s firl function for digital filter design. The GUI has
length-15 LPFs and HPFs, and length-21 BPFs. The LPF and HPF designs have one parameter for
the cutoff frequency which determines the boundary between the non-ideal passband and stopband.
The BPF has a parameter for center frequency which determines where the passband is located. The
default bandedges are +0.27r from the center frequency, but since this filter is not ideal the frequency
response at the bandedges has a magnitude of 0.5.

Notation: the cutoff frequency for HPFs and LPFs will be denoted @.

Note: The running average FIR filter is an approximate lowpass filter, but it is not a very good one because it
is not very close to an ideal LPF. Better filters can be designed with computer-aided optimization algorithms,
or with MATLAB’s firl function.

(a) Use the dltidemo to view the sinusoid-in gives sinusoid-out behavior of an ideal bandpass filter
(BPF). Choose the center frequency for the BPF to be @ = 0.47. Then the desired bandedges of the
passband are @y = 0.2z and @, = 0.67r. Since the filter is not ideal, these two bandedges define an
approximate extent of the BPF’s passband.

(b) Set the input to be x[n] = 1.5+ 0.9co0s(0.65wn). Determine the output signal. Compare to the output
obtained in part (d) for Ideal Filters. Explain why is is not zero.

(c) The output signal might contain both frequency components. Relate the amplitudes of the output
signal’s two frequency components to the non-ideal nature of the frequency response. Right-click to
get values from the frequency response plot.

2 Lab Exercise

The main objective of this lab is to use a MATLAB GUI to demonstrate the frequency response, as well as
the sinusoid-in gives sinusoid-out property of LTI systems.
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LTI Frequency Response Demo
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Theoretical Answer |

Figure 1: DLTI demo interface showing the output when x[n] = 2cos(0.05n) is filtered by an length-11
averager. The frequency response (magnitude and phase) of the averager is shown in the middle panels.
The frequency response demo, d1tidemo, is part of the SP-First (or DSP-First) Toolbox.

The dltidemo GUI illustrates the “sinusoid-IN gives sinusoid-OUT” property of LTI systems. In this
demo, you can change the amplitude, phase and frequency of an input sinusoid, x[r], and you can change
the digital filter that processes the signal. Then the GUI shows the output signal, y[n], which is also a
sinusoid (at the same frequency). Figure 1 shows the interface for the dltidemo GUI. It is possible to
see the formula for the output signal; just click on the \ Theoretical Answer \button located at the bottom-
middle part of the window. The digital filter can be changed by choosing different\ Filter Choice \ options

in the ‘ Filter Specifications|box in the lower right-hand corner.
Perform the following steps with the d1tidemo GUI:

(a)
(b)

(©)

(d)

(e)

Set the input to x[n] = 1.8cos(0.1(n —2)); note that this sinusoid has a positive peak at n = 2.

Set the digital filter to be a 7-point averager. Using the middle panels that show the frequency re-
sponse, measure the magnitude and phase of the frequency reponse at the input frequency. Right-click
to get values from the frequency response plot.

Give an equation that explains how the time delay is related to the phase of H (e’ ‘?’) at ® = 0.17x.
Remember that phases differing by integer multiples of 27 are the same.

Convert the phase to time-index delay. Then you can determine a formula for the output signal that
can be written in the form: y[n] = Acos(@o(n —n7)), where ny is an integer. Using n7 from y[n] and
the fact that the input signal had a peak at n = 2, it should be easy verify how much the peak of the
cosine wave has been shifted. This is called the time delay through the filter.

‘ Instructor Verification (separate page) ‘

Now, change the frequency of the input signal so that the output is exactly zero. Sinusoidal compo-
nents at other frequencies @ might also be nulled—make a list of these nulled frequencies in the range
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0 < ® < . There are many choices for this frequency; list them all.
Hint: Recall the Dirichlet form for the frequency response of the averaging filter, and where it has
regularly spaced zeros versus @.

(f) When the output of an FIR filter is zero, the FIR filter acts as a Nulling Filter for a certain input
frequency. Design a second-order nulling filter that removes the cosine component from the following
signal: x[n] = 1+ cos(0.437n). List the three filter coefficients of the nulling filter. Note that the DC
component is not removed, so determine the DC level of the output signal.

‘ Instructor Verification (separate page) ‘

2.2 Ideal Filters and Practical Filters

In d1tidemo, it is possible to choose from two classes of filters: ideal filters and practical filters.

2.2.1 Ideal Filters

(a) Define the input signal to be x[n] = 1.8co0s(0.47n).

(b) LPF: Set the filter to be an ideal LPF with a cutoff frequency of &, = 27(0.29). Determine a value
for the phase slope so that the output will be delayed by 3, i.e., y[n] = 1.8c0s(0.477(n —3)). In
addition, get the formula for the output signal from the Theoretical Answer. Explain why the phase
of the theoretical output signal is not equal to —1.417. Consider multiples of 27 in the phase which
must be taken into account when relating the phase to the delay.

(c) HPF: Change to an ideal HPF; use the same phase slope as in the previous part. Determine the
minimum value of the cutoff frequency so that the output signal is exactly zero.

Instructor Verification (separate page)

2.2.2 Practical Filters

Since ideal filters cannot be implemented with numerical computation, it is necessary to study how much
degradation there will be when actual implementable filters are used. In this section, the filters are order-
14 FIR filters with 15 filter coefficients. For both tests, use the same input signal as before: x[n] =
1.8co0s(0.47rn). When you observe the output signal, think about the following question: Do you ex-
pect the signal to be in the stopband or passband of the filter, i.e., do you expect the output to be zero or to
be equal to the input?

(a) LPF: Set the filter type to a length-15 LPF, with its cutoff frequency at &, = 27(0.29). The cutoff
frequency determines the boundary between the stopband and the passband. Use the GUI to determine
the output signal passed by the LPF. Comment on how close this filter is to the ideal.

(b) In the lowpass case, the output can be written as y[n] = Aqycos(0.477(n—ny)), where n; represents
a delay. Use the time-domain plots, or the phase slope and phase value to determine n; which must
be an integer. Comment on the degradation of the output amplitude from the ideal.

(c) HPF: Set the filter type to a length-15 HPF, with its cutoff frequency at &, = 27(0.29). The cutoff
frequency determines the boundary between the stopband and the passband. Use the GUI to determine
how well the output signal rejected by the HPF versus an ideal filter, i.e., determine the amplitude of
the output signal which should be close to zero.

Instructor Verification (separate page)
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2.3 Lab-HW: Removing Interference from a Speech Signal

FIR filters can be used to reject interfering signals that are sinusoidal. One situation where this might occur
is in a recording of speech where the recorder is not adequately isolated from the power line signal which
is a 60-Hz sinusoid. The recorded signal is actually the sum of two signals: the desired speech signal and
a sinusoid, Acos(1207r¢ 4+ ¢). In this section, you will design an FIR nulling filter to remove interfering
sinusoids, and also assess how much the desired signal is distorted by the nulling process.

(a) Load the file speechbad which contains one signal, xxbad, which is the sum of a speech signal plus
very large amplitude sinusoids at 1555 Hz and 2222 Hz. The sinusoids start and stop during the
utterance. The sampling rate of this signal is 8000 Hz, and the good speech signal was scaled so that
its maximum value is one. Listen to this signal to verify that the interference is so strong that the
speech is not recognizable. Make a spectrogram (in dB).

(b) Design a cascade of two FIR nulling filters to remove the sinusoids completely. This can be ac-
complished by finding the numerical values of the filter coefficients for each second-order nulling
filter. Combine the cascaded filters into one equivalent FIR filter, and give the filter coefficients of the
equivalent filter.

(c) Plot the frequency response of the cascaded nulling filter designed in the previous part. Indicate the
frequencies where the nulls are found.

(d) Process the corrupted signal, xxbad, through the nulling filters. Make two spectrograms (in dB): one
for the input signal and the other for the output signal. Point out features that verify that the nulling
filters operated correctly.
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Lab: DLTI GUI and Nulling Filters
INSTRUCTOR VERIFICATION SHEET

Turn this page in to your lab grading TA before the end of your scheduled Lab time.

Name: LoginUserName: Date:

’ Part ‘Observations

2.1(b) | Magnitude and phase of the frequency response of the length-7 averager, at the input frequency.

2.1(c) | Give an equation that explains how the filter’s delay is related to the phase of H (e’ ‘?’) atw =0.1mx.

2.1(d) | Formula for output from a length-7 averager written in the form y[n] = A cos(®o(n —n7))

Verified: Date/Time:

2.1(e) | List of all frequencies nulled by the running-average FIR filter in part (b), or give a formula.

2.1(e) | Length-3 nulling filter, list three filter coefficients. Give the DC level of the output signal.

Verified: Date/Time:

2.2.1(b) | Phase slope for Ideal HPF. Explain why phase of y[n] formula is not equal to —1.417?

2.2.1(c) | Cutoff frequency for Ideal HPF to get y[n] = 0.

Verified: Date/Time:

2.2.2(a) | Output of length-15 LPF with &, = 27(0.29) which can be expressed as Aoy cos(don + @)

2.2.2(b) | LPF output: Determine the delay n,; so that the output can be expressed with the formula,
Aoutcos(do(n—ng))

2.2.2(c) | Output of length-15 HPF with &, = 27(0.29). Give formula and explain why y[n] is not exactly zero.

Verified: Date/Time:
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Lab: DLTI GUI and Nulling Filters
LAB HOMEWORK QUESTION

Turn this page in to your lab grading TA at the very beginning of your next scheduled Lab time.

Name: LoginUserName: Date:

Part 2.3 Design an FIR nulling filter to remove two interfering sinusoids, and also assess how much the
desired signal is distorted by the nulling process.

(a) Load the file speechbad which contains one signal, xxbad, which is the sum of a speech signal plus
very large amplitude sinusoids at 1555 Hz and 2222 Hz. The sinusoids start and stop during the
utterance. The sampling rate of this signal is 8000 Hz, and the good speech signal was scaled so that
its maximum value is one. Listen to this signal to verify that the interference is so strong that the
speech is not recognizable. Make a spectrogram (in dB).

(b) Design a cascade of two FIR nulling filters to remove the sinusoids completely. This can be ac-
complished by finding the numerical values of the filter coefficients for each second-order nulling
filter. Combine the cascaded filters into one equivalent FIR filter, and give the filter coefficients of the
equivalent filter.

(c) Plot the frequency response of the cascaded nulling filter designed in the previous part. Indicate the
frequencies where the nulls are found.

(d) Process the corrupted signal, xxbad, through the nulling filters. Make two spectrograms (in dB): one
for the input signal and the other for the output signal. Point out features that verify that the nulling
filters operated correctly.
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