DSP First

Mini-Project 03: Tone Removal

Background

Write a simple MATLAB program that removes unwanted tones from a wav file. The file **SunshineSquare.wav** has had some unwanted tones added to it. Your job is to remove the tones so you can hear the message better.

Approach

There at two steps needed to remove the tones. First determine the frequencies of the interfering tones, and second, filter out those frequencies.

Find the frequencies

The following MATLAB code will read the way file and plot a spectrogram of it.

```
[xx, fs] = wavread('SunshineSquare');
xx = xx';
figure(1)
specgram(xx, [], fs)
```

Note, fs is the sampling rate of the wav file and is important. Estimate the frequencies of the tones from the spectrogram. Convert the frequencies in Hz to digital frequencies in $\hat{\omega}$.

Filter the Frequencies

A weighted three-point averager is enough to remove one frequency at a time. Given the impulse response:

$$h[n] = \{1, A, 1\}$$

find the frequency response $H(e^{j\hat{w}})$ in terms of A. Find the values of A needed to remove each of the unwanted frequencies. Once you have the correct values, this code can be used to remove one frequency at a time:

```
hh = [1, AA, 1];
yy = filter(hh, 1, xx);
```

You will have to fill in your values for AA. You can check the frequency response of your filter by using freqz:

```
ww = -pi:pi/100:pi;
HH = freqz(hh, 1 ,ww);
plot(ww,abs(HH));
```

Hint: You will have to use multiple filters. Once you have it working, combine those filters into one filter.

Due Date:

For this mini project you are to work on your own, however you are free to discuss ideas with others.

What is due:

- 1. wav file of your cleaned up file.
- 2. One page memo describing what you did. Your memo should include:
 - a. An introduction telling what you are doing. (One or two sentences should be enough.)
 - b. A brief summary of what you did. Have a table listing the frequency in Hz, the digital frequency, and **A** for each tone. Include a spectrogram of the cleaned up signal in your memo. Highlight any **extras** you've added. No more that half a page or so.
 - c. Your judgment of the effectiveness of this project in reinforcing the class. Justify your opinion. No more than a sentence or two.
 - d. A brief conclusion. (A sentence or two should be plenty.)
 - e. Use a memo format.
- 3. Your MATLAB code.