
DSP First, 2e Signal Processing First
Lab P-14: Octave Band Filtering

Pre-Lab: Read the Pre-Lab and do all the exercises in the Pre-Lab section prior to attending lab.

Verification: The Warm-up section of each lab should be completed during your assigned Lab time and
the steps marked Instructor Verification signed off during the lab time. One of the laboratory instructors
must verify the appropriate steps by signing on the Instructor Verification line. When you have completed
a step that requires verification, demonstrate the step to your instructor. Turn in the completed verification
sheet before you leave the lab.

Lab Report: Write a full report on Sections 4 and 5 with graphs and explanations. A best practice is to
label the axes of your plots and include a title for every plot. In order to keep track of plots, include each
plot inlined within your report. If you are unsure about what is expected, ask your grader/instructor.

1 Introduction

This lab introduces a practical application where we attempt to extract information from sinusoidal signals—
in this case, piano notes. Bandpass FIR filters can be used to extract the information encoded in the wave-
forms. The goal of this lab is to design and implement several bandpass FIR filters in MATLAB, and use the
filtered outputs to determine automatically which note is being played. However, since there are 88 keys on
the piano, we will only require the system to figure out which octave the note is in, not the exact note. In
the experiments of this lab, you will use firfilt(), or conv(), to implement filters and freqz() to obtain
the filter’s frequency response.1 As a result, you should learn how to characterize a filter by knowing how it
reacts to different frequency components in the input.

1.1 Frequency Response of FIR Filters

The output or response of a filter for a complex sinusoid input, ej O!n, depends on the frequency, O!. Often a
filter is described solely by how it affects different frequencies—this is called the frequency response. The
frequency response of a general FIR linear time-invariant system is

H.ej O!/D

MX
kD0

bke
�j O!k (1)

MATLAB has a built-in function for computing the frequency response of a discrete-time LTI system. The
following MATLAB statements show how to use freqz to compute and plot the magnitude (absolute value)
of the frequency response of an L-point averaging system2 as a function of O! in the range �� � O! � � :

bb = ones(1,L)/L; %-- Filter Coefficients

ww = -pi:(pi/100):pi; %-- omega hat frequency axis

HH = freqz(bb, 1, ww); %<--freekz.m is an alternative

subplot(2,1,1);

plot(ww, abs(HH))

subplot(2,1,2);

plot(ww, angle(HH))

xlabel(’Normalized Radian Frequency’)

1If you do not have the function freqz.m, there is a substitute available in the DSP First toolbox called freekz.m.
2The filter length L is equal to M C1.
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We use capital HH for the frequency response. For FIR filters, the second argument of freqz( , 1, )
must always be equal to 1. The frequency vector ww should cover the interval �� � O! � � for O!, and its
spacing must be fine enough to give a smooth curve for H.ej O!/.

2 Background and Pre-Lab

2.1 Piano Notes

A piano keyboard consists of 88 keys grouped into octaves. Each octave contains 12 notes, the notes in one
octave being twice the frequency of the notes in the next lower octave.

Middle-C A-440

C3 D3 E3 F3 G3 A3 B3 C4 D4 E4 F4 G4 A4 B4 C5 D5 E5 F5 G5 A5 B5
40 42 44 45 47 49 51 52 54 56 57 59 61 6339373533323028

41 43

 OCTAVE

Figure 1: Layout of a piano keyboard. Key numbers are shaded. The notation C4 means the C-key in the
fourth octave.

Frequencies of the notes are defined by setting the frequency of one note and referring all other frequen-
cies to that note. The reference note is the A above middle-C, which is usually called A-440 (or A4) because
its frequency is 440 Hz. Each octave contains 12 notes (5 black keys and 7 white) and the ratio between the
frequencies of the notes is constant between successive notes. As a result, this ratio must be 21=12. Since
middle C is 9 keys below A-440, its frequency is approximately 261 Hz. Consult Chapter 3 for more details.

If we want to produce a system capable of writing music directly from a recorded signal x.t/, we need
to analyze the frequency content of the signal. One way to do this analysis is to use a set of bandpass FIR
filters, each one having its passband designed for one note on the keyboard. This would require a very large
number of filters. Another way to do the analysis would be to use a two stage approach. First, we would
use a set of bandpass FIR filters where each passband would pass the frequencies in one octave. Then these
“octave filters” would be followed by more precise bandpass filters (BPFs) that would determine which key
inside the octave is being played. The work in this lab will be to produce a working set of “octave filters.”

3 Warm-up: Bandpass Filtering

3.1 Create a Bandpass Filter (BPF)

There are many ways to get the filter coefficients for a bandpass filter. One easy choice is to define the
impulse response of an L-point FIR filter as:

hŒn�D
2

L
cos. O!cn/; 0� n < L (2)

where L is the filter length, and O!c is the center frequency that defines the frequency location of the pass-
band. For example, we would pick O!c D 0:2� if we want the peak of the filter’s passband to be centered at
0:2� . The bandwidth of the bandpass filter is controlled by L; the larger the value of L, the narrower the
bandwidth. This particular filter is also discussed in the section on useful filters in Chapter 7.

McClellan, Schafer, and Yoder, DSP First, 2e, ISBN 0-13-065562-7.
Prentice Hall, Upper Saddle River, NJ 07458. c2015 Pearson Education, Inc.

2 McClellan, Schafer and Yoder, Signal Processing First.
Prentice Hall, Upper Saddle River, New Jersey, 2003. c2003 Prentice Hall.



(a) Generate the impulse response of a length-25 bandpass filter with O!c D 0:2� , and plot hŒn� with a
stem plot.

(b) Compute the frequency response of the length-25 BPF from the previous part and plot its magnitude
and phase versus O! over the range �2� � O! � 2� .

(c) Use the magnitude response plot to describe the passband of the BPF. For example, measure the
bandwidth at a convenient point such as 50% of the peak.

Instructor Verification (separate page)

3.2 Overlay Plotting

Sometimes it is convenient to overlay information onto an existing MATLAB plot. The MATLAB command
hold on will inhibit the figure erase that is usually done just before a new plot. Demonstrate that you can
do an overlay by following these instructions:

(a) Plot the magnitude response of the 25-point BPF filter defined in (2). For this plot, it is sufficient to
use a horizontal frequency axis that extends from �� toC� .

(b) Use the stem function to place vertical markers at several points on the frequency response at fre-
quencies f0; ˙0:2�; ˙0:5� g.

hold on, stem(pi*[-0.5,-0.2,0,0.2,0.5],0.9*ones(1,5),’r.’), hold off

3.3 Signal Concatenation

In a previous lab, a very long music signal was created by joining together many sinusoids. When two
signals are played one after the other, the composite signal is created by the operation of concatenation. In
MATLAB, this can be done by making each signal a row vector, and then using the matrix building notation
as follows:

xx = [ xx, xxnew ];

where xxnew is the sub-signal being appended. The length of the new signal is equal to the sum of the
lengths of the two signals xx and xxnew. A third signal could be added later on by concatenating it to xx.

3.3.1 Comment on Efficiency

In MATLAB the concatenation method, xx = [ xx, xxnew ], would append the signal vector xxnew to
the existing signal xx. However, this becomes an inefficient procedure if the signal length gets to be very
large. The reason is that MATLAB must re-allocate the memory space for xx every time a new sub-signal
is appended via concatenation. If the length xx were being extended from 400,000 to 401,000, then a clean
section of memory consisting of 401,000 elements would have to be allocated followed by a copy of the
existing 400,000 signal elements and finally the append would be done. This is very inefficient for long
signals, but would not be noticed for short signals.

An alternative is to pre-allocate storage for the complete signal vector, but this can only be done if the
final length is known ahead of time.
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3.4 Filtering a Signal

Use the filter from a previous section (Sec. 3.1) to process an input signal composed of several sinusoids:

xŒn�D

8̂<̂
:

cos.0:5�n/ 0� n < 200

2 200� n < 400

0:5cos.0:2�n/ 400� n < 600

(a) Generate xŒn� in a vector called xx.

(b) Filter xx to obtain yy.

(c) Make stem plots of xx and yy.

(d) Use the frequency response to validate that the output signal has the correct magnitude and phase in
each of the three regions where the input has different frequencies.

(e) Comment: observe the transient effect at the transitions (n D 200 and n D 400). This is due to the
start-up of the FIR filter as it encounters a new sinusoid. How long does the transient last (in samples)?

Instructor Verification (separate page)

4 Lab Exercises: Bandpass Filter Design

Section 4.1 should not be included in the lab report; it is provided as an extension of the Warm-up. Sec-
tion 4.2 should be included.

4.1 Simple Bandpass Filter Design

The L-point averaging filter is a lowpass filter. Its passband width is controlled by L, being inversely
proportional to L. It is also possible to create a filter whose passband is centered around some frequency
other than zero. One simple way to do this is to define the impulse response of an L-point FIR as:

hŒn�D
2

L
cos. O!cn/; 0� n < L

where L is the filter length, and O!c is the center frequency that defines the frequency location of the center
of the passband.

(a) Generate a bandpass filter that will pass a frequency component at O! D 0:4� . Make the filter length
.L/ equal to 40. Make a plot of the frequency response magnitude and phase.

(b) The passband of the BPF filter is defined by the region of the frequency response where jH.ej O!/j

is close to its maximum value of one. Typically, the passband width is defined as the length of the
frequency region where jH.ej O!/j is greater than some level such as 0.5, or 0:707 D 1=

p
2. Note:

you can use MATLAB’s find function to locate those frequencies where the magnitude satisfies
jH.ej O!/j � 0:5 (similar to Fig. 2). Use the plot of the frequency response for the length-40 band-
pass filter from part (a), and determine the passband width using the 0.5 level to define the pass band.

(c) Make two other plots of BPFs for LD 20 and LD 80 with the same O!c ; and measure the passband
width for both. Then explain how the width of the passband is related to filter length L, i.e., what
happens when L is doubled or halved.
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Figure 2: The frequency response of an FIR bandpass is shown with its passband and stopband regions. In
this case, the passband is defined to be the region where jH.ej O!/j is greater than 0.5; and the stopband is
the region where the magnitude is less than 0.1.

4.2 A Better BPF

It is possible to get better performance in the frequency response by modifying the filter coefficients slightly.
One easy way is to use a Hamming window. In this case, the impulse response for a length-L bandpass filter
would be given as:

hŒn�D .0:54�0:46cos.2�n=.L�1///cos. O!c.n� .L�1/=2// for nD 0;1;2; : : :L�1 (3)

where O!c is the desired center frequency for the BPF. The first term is the Hamming window. As before, the
filter length L determines the passband width, although the Hamming BPF tends to be a little wider than the
BPF in the previous section. The big advantage of the Hamming BPF is that its stopband has ripples that
are very small (usually less than 0.01). Use zooming to figure out the height of the ripples in the stopband
when you plot the frequency response (below).

(a) Generate a Hamming bandpass filter that will pass a frequency component at O! D 0:25� . Make
the filter length .L/ equal to 41. Make a plot of the frequency response magnitude and phase.
Measure the response of the filter (magnitude and phase) at the following frequencies of interest:
O! D f0; 0:1�; 0:25�; 0:4�; 0:5�; 0:75� g. Summarize the values in a table.
Hint: use MATLAB’s freqz() function to calculate these values, or the find() function to extract
this information from the vector that produce the plot.

(b) The passband of the BPF filter is defined by the region of the frequency response where jH.ej O!/j is
close to its maximum value of one. In this case, the passband width is defined as the length of the
frequency region where jH.ej O!/j is greater than 50% of the peak magnitude value. The stopband of
the BPF filter is defined by the region of the frequency response where jH.ej O!/j is close to zero.

Use the plot of the frequency response for the length-41 bandpass filter from part (a), and determine
the passband width using the 50% level to define the pass band. Make two other plots of BPFs for
L D 21 and L D 81, and measure the passband width in both. Then explain how the width of the
passband is related to filter length L, i.e., what happens when L is (approximately) doubled or halved.

(c) If the input signal to the length-41 FIR BPF is:

xŒn�D 2C2cos.0:1�nC�=3/C cos.0:25�n��=3/
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Determine (by hand) the formula for the output signal. (Hint: use the magnitude and phase measure-
ments from part (a).) Comment on the relative amplitudes of the three signal components in the output
signal, observing whether or not they were in the passband or stopband of the filter.

(d) Use the frequency response (and passband width) of the length-41 bandpass filter to explain how the
filter is able to pass the components at O! D˙0:25� , while reducing or rejecting others.

5 Lab Exercises: Piano Note Decoding

It is possible to decode piano signals into octaves using a simple FIR filter bank. The filter bank in Fig. 3
consists of seven bandpass filters which each pass only one of the seven possible octaves. The input signal
for all the filters is the same.

bbb
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Octave #3

Octave #2

Octave #1

Octave #6

Octave #7

y1Œn�

y2Œn�

y3Œn�
xŒn�

y6Œn�

y7Œn�

Figure 3: Filter bank consisting of bandpass filters which pass frequencies corresponding to the seven oc-
taves on a piano. (Each octave contains 12 keys, but we will ignore the four extra keys outside the seven
complete octaves.)

The octave filtering system needs two pieces: a set of bandpass filters (BPFs) to isolate individual
frequency bands (i.e., the octaves), and a detector to determine whether or not a given octave is active. The
detector must “score” each BPF output and determine whether or not the octave contains one or more notes.
In a practical system where noise and interference are also present, this scoring process is a crucial part of
the system design, but we will only work with noise-free signals to illustrate the basic functionality of the
system.

To make the whole system work, you will have to write at least three function M-files:

1. A filter design function to produce the filter coefficients for the BPFs in Fig. 3.

2. A filtering function that will filter the input signal through each channel.

3. A scoring function that will evaluate the output of each channel for “activity.”

The following sections discuss how to create or complete these functions.
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5.1 Piano Octaves

The bandpass filter specs are determined by the frequencies of different octaves on the piano. The standard
notation is to start an octave at the “C” key. For example, octave #4 starts at “middle-C” which is key #40
and extends up to key #51; the fifth octave starts at key #52 and extends to key #63, and so on. See Fig. 1
for the layout of a piano keyboard.

In this implementation, we want to design filters that will isolate five different octaves: octaves #2
through #6. Octave #2 starts with key #16, octave #3 starts at key #28, and octave #6 starts at key #64 (the
last key in octave #6 is key #75).

In order to design the BPFs, we need the upper and lower frequencies for each octave in O!. We can
convert key number to frequency in hertz, and then use the sampling frequency to convert analog frequency
to O!. For this lab, assume that the sampling frequency is fs D 8000 Hz.

Make a table defining the five BPFs that you must design.

(a) For each octave, determine the lower and upper frequencies which will become the lower and upper
edges of the passband of the BPF. Give these numbers in hertz and also in O!.

(b) Then compute the center frequencies of the BPFs as the midpoint between the lower and upper band
edges of the filter.

Save this information for use in the Filter Design Section (next).

5.2 Bandpass Filter Bank Design

The FIR filters that will be used in the filter bank (Fig. 3) should be constructed according to the Hamming
impulse responses of (3). These Hamming BPFs require two parameters: the length L and the center
frequency O!c . Use the previous table of piano octave frequencies to define the passbands. Furthermore, the
filters should be scaled so that their maximum magnitude at the center frequency of the passband is equal to
one. This can be done by introducing a third parameter ˇ that will scale all the filter coefficients.

hŒn�D ˇ .0:54�0:46cos.2�n=.L�1///cos. O!c.n� .L�1/=2// for nD 0;1;2; : : :L�1 (4)

The constant ˇ gives flexibility for scaling the filter’s gain to meet a constraint such as making the maximum
value of the frequency response equal to one. The bandwidth of the bandpass filter is controlled by L; the
larger the value of L, the narrower the bandwidth.

(a) Devise a strategy for picking the constant ˇ so that the maximum value of the frequency response will
be equal to one. Write the one or two lines of MATLAB code that will do this scaling operation in
general. There are two approaches here:

(a) Mathematical: derive a formula for ˇ from the formula for the frequency response of the BPF.
Then use MATLAB to evaluate this closed-form expression for ˇ. In this case, such analysis is
nearly impossible.

(b) Numerical: use MATLAB’s max function to measure the peak value of the unscaled frequency
response, and then have MATLAB compute ˇ to scale the peak to be one.

(b) You must design five separate bandpass filters for the filter bank system. Each filter has a different
length and a different center frequency. The lengths have to be different because the bandwidths of
the octaves are different. In fact, the bandwidth of each octave is twice that of the next lower octave.

For each filter, determine the lengthL that is required to get the correct bandwidth. Use the bandedges
determine in Section 5.1. This filter design process will be trial-and-error, so each time you change L
you will have to make a frequency response plot (magnitude only) to see if the filter is correct.
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(c) Generate the five (scaled) bandpass filters. Plot the magnitude of the frequency responses all together
on one plot (the range 0� O! � � is sufficient because jH.ej O!/j is symmetric). Indicate the locations
of each of the center frequencies of the five octaves on this plot and illustrate that the passbands cover
the separate octaves. Hint: use the hold command and markers as you did in the warm-up.

(d) As help for the previous parts, here are some comments: The passband of the BPF filter is defined
by the region of O! where jH.ej O!/j is close to one. In this lab, the passband width is defined as the
length of the frequency region where jH.ej O!/j is greater than 0:5.

Filter Design Specifications: For each octave, choose L so that the entire octave of frequencies lies
within the passband of the BPF.

The stopband of the BPF filter is defined by the region of O! where jH.ej O!/j is close to zero. In
this case, we can define the stopband as the region where jH.ej O!/j is less than 0.01 because the
Hamming filters have excellent stopbands. Notice, however, that the stopbands do not eliminate all
the other octaves because the stopband does not start where the passband ends. There is a small
“transition region” between the pass and stop bands where the frequency response is small, but not as
small as in the stopband.

Use the zoom on command to examine the frequency response over the frequency domain where
the octaves lie. Comment on the selectivity of the bandpass filters, i.e., use the frequency response
(passbands and stopbands) to explain how the filter passes one octave while rejecting the others. Are
the filter’s passbands narrow enough so that only one octave lies in the passband and the others are in
the stopband?

5.3 Piano Octave Decoding

There are several steps to decoding a piano signal to figure out which note is being played:

1. Filter the individual segments to extract the possible frequency components using carefully designed
BPFs.

2. Determine a set of time segments over which to examine the output signals. In general, this could be
hard to implement so we will restrict the notes to occur at regular intervals based on the timing of the
song.

3. Determine which frequency components are present in each time segment by measuring the size of
the output signal from all of the bandpass filters. This tells you which octaves are active.

Here is how the system should work: When the input to the filter bank is a piano signal, the outputs from
a few of the bandpass filters (BPFs) should be larger than the rest. If we can detect (or measure) the large
outputs, then we know which octaves contain notes. These octaves are then used to label the notes partially.

A good measure of the output levels is the peak value of the filter outputs, because when the BPF is
working properly it should pass only the sinusoidal signals within one octave and the peak value would
represent the combined amplitude of those sinusoids. If there is only one sinusoid within the octave then the
peak value is exactly equal to the amplitude of the one sinusoid present.

(a) In order to test your design so far, generate the following signal composed of several sinusoids:

x.t/D

8̂<̂
:

cos.2�.220/t/ 0� t < 0:25s

cos.2�.880/t/ 0:3� t < 0:55s

cos.2�.440/t/C cos.2�.1760/t/ 0:6� t < 0:85s

Use a sampling rate of fs D 8000 Hz, and generate x.t/ in a vector called xx.
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(b) Filter xx through the five filters of the filter bank

(c) Make plots of the five outputs all together in one figure (use subplot(5,1,n)).

(d) Use the frequency responses to validate that the output signals have the correct magnitude and phase
in each of the three regions where the input has different frequencies. You must determine which
octave the signals are in.

(e) Comment: observe the transient effect at the transitions. This is due to the start-up of each FIR filter
as it encounters a new sinusoid. How long does the transient last (in seconds)? Is it different for each
filter in the filter bank?

5.4 Scoring for Activity

The final objective is detecting which octaves contain notes. In order to automate this detection process, we
need a score function that rates each octave for possible activity.

(a) Complete the octavescore function based on the skeleton given in Fig. 4. The input signal xx to the
octavescore function must be the input signal containing all the notes. Rather than trying to detect
the beginning and end of individual notes, we will have the score function calculate a score every
50 ms.

function sc = octavescore(xx, hh, fs)
%OCTAVESCORE
% usage: sc = octavescore(xx, hh, fs)
% returns a score based on the max amplitude of the filtered output
% xx = input signal containing musical notes
% hh = impulse response of ONE bandpass filter
% fs = sampling rate
%
% The signal detection is done by filtering xx with a length-L
% BPF, hh, and then finding the maximum amplitude of the output
% within 50 millisecond segments.
% The score is a vector containing the maximum amplitudes
% of all the segments.

Figure 4: Skeleton of the octavescore.m function. Complete this function with additional lines of code.

(b) Use the following rule for scoring: the score for the i -th channel equals max
n
jyi Œn�j, where the max-

imum is taken over a 50 ms interval. The signal yi Œn� is the output of the i -th BPF. Since score must
be computed every 50 ms, each channel has a score vector with 20 scores per second.

(c) Note: After filtering and prior to scoring, adjust the output signal for the delay through the filter. Since
each filter has a different length, the delays are slightly different. For the Hamming BPFs, the delay
is .L�1/=2. This is a minor issue, but it might cause some misalignment of the output scores.

(d) Finally, use all the score vectors together to implement an automatic detection system, based on
the fact that all filter passbands are above 50%. If all the input signals have an amplitude of one,
then comparing the scores to a threshold of 0.5 would detect the presence of a signal. This is a big
assumption on the inputs, but it will be true in the test data (below).
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Comparing the scores to a threshold will give an output that is either zero (score less than threshold)
or one (score greater than threshold). So you will end up with a 5�N matrix consisting of ones and
zeros, whereN is the number of 50-ms intervals. Use your experience with plotting the output signals
in the previous section to judge how well your automatic system is working, i.e., are the ones in the
correct locations and correct octaves?

5.4.1 Testing

Once you get your system working you could test it in three ways (only #1 needs to be included with the lab
report):

1. Use the test signal provided with the lab in the ZIP file link which contains the MAT file called
labtest.mat. It contains a signal sampled at 8000 samples/s whose duration is 3.77 s. The signal

nkht
CD-ROM

labtest.mathas either 0, 1 or 2 sinusoidal notes present at one instant of time. The amplitude of each sinusoid
is one. You should run your system to determine which octaves are active in each 50-ms time slice.
The MAT file also contains a matrix called notes which has the correct notes in the input (as key
numbers). The durations vary between 0.16 and 0.32 s.

2. Generate a music signal that is a progression of notes starting at key #16, ending at key #87, and
taking every other note, or every third note. To keep the overall signal reasonably short, make each
note about 0.2 s long, and make the amplitude of every sinusoid equal to one. This test signal is useful
because you know the correct answer.

3. Generate your own musical tones, as you did in Lab 04. Make sure to use fs D 8000 Hz. In this case,
you will have several notes playing simultaneously, so the system will have a hard time making 100%
correct decisions.

When you run your system, there might be errors some of the time, especially when a note frequency is near
the boundary between two octaves. Summarize the behavior of your test cases above, and comment on how
well your system works. For example, what is the percentage of errors (i.e., incorrect octave designations)?
What happens if two simultaneous notes are in the same octave?
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Lab: Octave Band Filtering
INSTRUCTOR VERIFICATION SHEET

Turn this page in to your lab grading TA before the end of your scheduled Lab time.

Name: Date of Lab:

Part 3.1: Create a bandpass filter; plot the magnitude response, and then determine the width of the pass
band at 50% of the peak.

Verified: Date/Time:

Part 3.4: Filter the three-sinusoid signal through the BPF, and explain the amplitudes of the output signal in
the three sections.

Verified: Date/Time:
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