
DSP First, 2e Signal Processing First

Lab S-9: Interference Removal from Electro-Cardiogram (ECG) Signals

Pre-Lab: Read the Pre-Lab and do all the exercises in the Pre-Lab section prior to attending lab.

Verification: The Exercise section of each lab should be completed during your assigned Lab time and
the steps marked Instructor Verification signed off during the lab time. When you have completed a step
that requires verification, demonstrate the result to your instructor and answer any questions about it. Turn
in the completed verification sheet before you leave the lab.

Lab Homework Questions: The Lab-Homework Sheet has a few lab related questions that can be answered
at your own pace. The completed Lab-HW sheet is due at the beginning of the next lab.

1 Pre-Lab

1.1 Objective

The goal of this lab is to explore the connection between the time domain (n), the frequency domain ( O!),
and the z-transform domain, using the GUI PeZ in MATLAB.

1. Placing Zeros: When placed on the unit circle, zeros of A.z/ will force the frequency response to be
zero which can then be used to null out sinusoids at one frequency.

2. Placing Poles: When placed near the unit circle (but inside), roots of B.z/ will create peaks in the
frequency response which can be used to form BPFs.

3. Designing IIR Notch Filters: requires conjugate zeros on the unit circle (UC) with a poles at the same
angle, just inside the UC. The frequency response of the notch is much sharper than a nulling filter
which is an FIR filter formed only from the conjugate zeros on the UC.

1.2 Overview

IIR filters can be used for many tasks; bandpass filtering is the most common, but nulling or notch filters are
also very useful for removing interference, especially narrowband interference caused by power lines. PeZ
is an ideal tool for studying the poles and zeros of IIR filters.

1.3 PeZ: Introduction

In order to build an intuitive understanding of the relationship between the location of poles and zeros in the
z-domain, the impulse response hŒn� in the n-domain, and the frequency response H.ej O!/ (the O!-domain),
A graphical user interface (GUI) called PeZ was written in MATLAB for doing interactive explorations of
the three domains.1 PeZ is based on the system function, represented as a ratio of polynomials in z�1, which
can be expressed in either factored or expanded form as:
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1The original PeZ was written by Craig Ulmer; a later version by Koon Kong is the one that we will use in this lab.
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whereM is the number of zeros andN the number of poles. If the poles and zeros occur in pairs that satisfy
the complex-conjugate property, then the following property holds:

A polynomial with real coefficients has roots that are real, or occur in complex-conjugate pairs.

The PeZ GUI is contained in the SP-First toolbox. To run PeZ, type pezdemo at the command prompt
and you will see the GUI shown in Fig. 1.2

Figure 1: GUI interface for pezdemo running in MATLAB version 6. A length-3 FIR filter is shown. Zero
locations are given in rectangular coordinates.

1.4 Controls for PeZ using pezdemo

The PeZ GUI is controlled by the Pole-Zero Plot panel in the upper left where the user can add (or
delete) poles and zeros, as well as move them around with the pointing device. For example, Fig. 1 shows a
case where two (complex-conjugate) zeros have been added, and PeZ has automatically included two poles
at z D 0 so that the system is causal. The button named ZZ was used to add these zeros; the button PP

would be used to add poles. By default, the Add with Conjugate property is turned on, so poles and zeros
are typically added in pairs to satisfy the complex-conjugate property, giving real coefficients.

To learn about the other controls in pezdemo, access the menu item called “Help” for extensive infor-
mation about all the PeZ controls and menus. Here are a few things to try. In the Pole-Zero Plot panel
you can selectively place poles and zeros in the z-plane, and then observe (in the other plotting panels) how
their placement affects the impulse and frequency responses. The red ray in the z-domain window is tied

2The command pez will invoke the older version of PeZ which is distinguished by a black background in all the plot regions.
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to the red vertical lines on the frequency responses, and they move together. This helps identify frequency
domain features that are caused by pole locations or zero locations, because the angle around the unit circle
corresponds to frequency O!. In PeZ an individual pole/zero pair can be moved around and the corresponding
H.ej O!/ and hŒn� plots will be updated as you drag the pole (or zero). Since exact placement of poles and
zeros with the mouse is difficult, an Edit button is provided for numerical entry of the real and imaginary
parts. Before you can edit a pole or zero, however, you must first select it in the list of Pole Locations or
Zero Locations . Next, you will have to make the necessary change in the edit field (box above the Edit

button) and then press the Edit button for the change to take effect. Removal of individual poles or zeros
can also be performed by using the -P or -Z buttons, or with the Delete button. Note that all poles and/or
zeros can be easily cleared by clicking on the -A button.

1.5 Relationships between z, n, and O! domains

Work through the following exercises and keep track of your observations by filling in the worksheet at the
end of this assignment. In general, you want to make note of the following quantities:

� Is the length of hŒn� finite or infinite? For the FIR case, what is the total length of the filter?

� How does hŒn� change with respect to its rate of decay for IIR filters? For example, when the impulse
response is of the form hŒn� D anuŒn�, the impulse response will fall off more rapidly when a is
smaller; and if jaj> 1 the impulse response will grow without bound.

� A stable system is one that obeys the bounded-input gives a bounded-output property. When the
impulse response grows without bound, the output is not bounded even though the input is ıŒn� with
is bounded by one.

� If hŒn� exhibits an oscillating component, what is the period of oscillation? Also, estimate the decay
rate of the “envelope” that overlays the oscillation.

� How does H.ej O!/ change with respect to null location, peak location and/or peak width?

Note: review the “Three-Domains - FIR” under the Demos link for Chapter 9 and “Three-Domains - IIR”
under the Demos link for Chapter 10 for movies and examples of these relationships.

Try various operations with PeZ to gain some familiarity with the interface. Below are some suggested
filters that you can create.

1.6 Zeros

1.6.1 Create an FIR Filter with PeZ

Implement the following FIR system: H.z/D 1� z�1C z�2 by factoring the polynomial and placing the
two zeros correctly. Observe the following two facts:

� The impulse response hŒn� values are equal to the polynomial coefficients of H.z/.

� The frequency response has nulls because the zeros of H.z/ lie exactly on the unit circle. Compare
the frequencies of the nulls to the angles of the zeros

Move the zero-pair around the unit circle and observe that the location of the null also moves.
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1.6.2 Create an FIR Filter with Many Zeros

The 6-point running-sum FIR digital filter has the following system function:
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(a) Use the roots function in MATLAB to determine the zeros of H.z/ for this 5-th order FIR filter.
Note: The formula for H.z/ involves a numerator-denominator cancellation that removes the zero at
z D 1. This is called a pole-zero cancellation.

(b) In PeZ place the five zeros of the FIR filter at the correct locations; use the edit feature to enter the
exact value of the zeros. Observe that the impulse response will be all ones when you have the correct
zero locations. Describe the frequency response of the filter: low pass versus high pass.

(c) List all the frequencies, O! 2 .��;��, that are nulled by the length-6 FIR filter.

(d) Make a different FIR filter that has the system function Hc.z/D 1� z
�6 which is the numerator in

part (a). Use PeZ to place the six zeros of this filter, or add one zero to the previous configuration.
Write a formula for the impulse response, hcŒn� using weighted, shifted impulses.

(e) The frequency response of the FIR filter in the previous part is called a comb filter. Explain why is it
called a “comb”, and determine where its nulls are located for O! 2 .��;��.

(f) One of the zeros will be at z D�1. Take that zero and move it from z D�1 to z DC1. Write down
the system function H.z/ for the new filter.
Hint: The GUI contains the answer if you know where to look.

(g) Describe the frequency response of the filter created in part (6), i.e., LPF, HPF, or BPF.

1.7 Real Poles

(a) Use PeZ to place a single pole at z D �1
2

and a single zero at z D 1. You may have to use the
Edit button to get the location exactly right. Describe the important features of the impulse response
hŒn�, and also the important features of the frequency response H.ej O!/. Define the passband as the
region where the magnitude response is greater than 90% of the maximum; and the stopband as the
region where the magnitude response is less than 10% of the maximum. Use freqz if you need more
precision in measuring the passband and stopband. Finally, use these plots in PeZ as the reference for
answering the next three parts.

(b) Move the pole slowly from a location close to the origin out to zD�1
2

, and then to out to zD�0:999.
Stay on the real axis by using Options->Move on Real Line from the GUI menu. Observe the
changes in the impulse response hŒn� and the frequency response H.ej O!/. Record your observations
on the Verification Sheet.

When you move poles and zeros, the impulse response and frequency response plots are updated
continually in PeZ. Select the pole you want to move and start to drag it slowly. At the same time,
watch for the update of the plots in the impulse response and frequency response panels.

(c) Move the pole from z D �0:999 to a radius outside the unit circle. Describe the changes in hŒn�.
Explain how the appearance of hŒn� validates the statement that the system is not stable. In this case,
the frequency response H.ej O!/ is not legitimate because the system is no longer stable.
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(d) In general, where should poles be placed to guarantee system stability? By stability we mean that the
system’s output does not blow up as n!1.

Instructor Verification (separate page)

1.7.1 Create a First-Order IIR Filter with PeZ

Implement the following first-order IIR system: H.z/D
1�z�1

1C0:9z�1

by placing its pole and zero at the correct locations in the z-plane. First, try placing the pole and zero
with the mouse, and then use the Edit feature under Pole Location or Zero Location to specify exact
locations. Since PeZ wants to add complex-conjugate pairs, you might have to delete one of the poles/zeros
that were added; or you can turn off the Add with Conjugate feature. Look at the frequency response and
determine what kind of filter you have, i.e., HPF, LPF, or BPF.

Now, use the mouse to “grab” the pole and move it from z D �0:9 to z D 0 and then to z DC0:9. To
move along the real axis, you can use Options -> Move on Real Line from the GUI menu. Observe
how the frequency response changes. Describe the type of filter for z D 0:9, i.e., HPF, LPF, or BPF.

1.8 Create a Second-Order IIR BPF with PeZ

Use the PeZ interface to implement the following second-order system:

H.z/D
1�z�2

1C0:8z�1C0:64z�2

Factor the numerator and denominator to get the two poles and the two zeros. Then place the poles and zeros
at the correct locations in the z-plane with PeZ. If it is hard to place the poles and zeros precisely with the
mouse, then use the Edit feature to enter the exact locations. Since PeZ wants to add complex-conjugate
pairs, you should only have to add one of the poles; for the zeros, the Add with Conjugate feature should
be turned off because you will be adding two real-valued zeros.
) Look at the frequency response and verify that you have created a BPF.

1.9 Using Poles to Create Filters that are Not Bandpass Filters

It is tempting to think that with two poles the frequency response always has a peak, but there are two
interesting cases where that doesn’t happen: (1) all-pass filters where jH.ej O!/j D constant, and (2) IIR
notch filters that null out one frequency, but have a relatively flat nonzero magnitude responses elsewhere.

� Implement the following second-order system:

H.z/D
64C80z�1C100z�2

1C0:8z�1C0:64z�2

by factoring to get the two poles and the two zeros, and then placing the poles and zeros in PeZ at the correct
locations in the z-plane. Adjust the gain .G/ to get the correct numerator coefficients.
) Look at the frequency response and determine what kind of filter you have.3

� Now, use the mouse to “grab” the zero-pair and move the zeros to be exactly on the unit-circle at the same

3The relationship between the poles and zeros of an all-pass filter is zero = 1/(pole)*; this situation where two poles and two
zeros are linked together via conjugate-inverse symmetry can be done with the PZ option in PeZ.
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angle as the poles. Observe how the frequency response changes. In addition, determine the H.z/ for this
filter, which should have the following form:

H.z/D
b0Cb1z

�1Cb2z
�2

1C0:8z�1C0:64z�2

) Describe the type of filter that you have now created.

2 Lab Exercise

The lab verification requires that you write down your observations on the verification sheet when using
the PeZ GUI. These written observations will be graded.

2.1 IIR Allpass Filter

An IIR allpass filter will pass all frequency components with magnitude response that is prefectly flat across
the entire frequency band, but its phase resonse in nonlinear versus frequency. It has one complex-conjugate
zero pair and one complex-conjugate pole pair.

Zeros at .1=r/e˙j� Poles at re˙j�

where r is a number slightly less than one, so that the system is stable. Thus the system function is:

H.z/D
B.z/

A.z/
DG

.1� r�1ej�z�1/.1� r�1e�j�z�1/

.1� rej�z�1/.1� re�j�z�1/
(2)

You can use PeZ to exhibit a typical frequency response for an alllpass filter.

(a) To create an example in PeZ, use r D 0:9 and � D �=3with the PZ option which automatically places
the zeros at the conjugate-inverse locations. Alternatively, you can calculate the zeros, and then use
the Zero Location edit window to enter the exact values.

(b) Adjust the gain .G/ so that the frequency response magnitude is always equal to 10. Show the final
PeZ result to your Lab instructor or TA.

(c) Write out the expression for the numerator and denominator of H.z/ created in part (1). You should
create H.z/ by multiplying out first-order terms with the poles and zeros in (2).
Hint: use MATLAB’s poly function to do the calculation. Also, the GUI provides H.z/, so you can
check your work.

Instructor Verification (separate page)

2.2 IIR Notch Filters

A common heart test is an electrocardiogram (ECG or EKG) which records electrical activity that changes
during the cardiac cycle. Metal electrodes placed at several locations on the body “pick up” these cardiac
electrical signals. Unfortunately, the electrodes also pick up signals from other electrical sources, most
notably harmonics of the 60-Hz power signal (or 50-Hz in some other countries). The objective of this short
lab is to show that you can remove a sinusoidal interference from a corrupted ECG signal, and produce a
cleaned-up signal. This will tap into your DSP skills as an accomplished “filter designer.”

An IIR notch filter will null out one frequency, while having a frequency response that is relatively flat
across the rest of the frequency band. It has one complex-conjugate zeros and poles:

Zeros at e˙j� Poles at re˙j�
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where r is a number slightly less than one. Thus the system function is:

H.z/D
B.z/

A.z/
DG

.1� ej�z�1/.1� e�j�z�1/

.1� rej�z�1/.1� re�j�z�1/
(3)

You can use PeZ to exhibit a typical frequency response for a notch filter. To see an example, select r D 0:95
and � D �=4. It is also possible to multiply out the numerator and denominator of (3) to get the filter
coefficients. In MATLAB the function poly will create a (z-transform) polynomial from its roots.

2.3 IIR Filter Implementation

In MATLAB the function that does IIR filtering is called filter. It requires the numerator (num) and
denominator (den) coefficients,

yy = filter( num, den, xx ):

For example, hn = filter([1,2],[1,-0.9],[1,zeros(1,50)]); will generate the impulse response of
a first-order IIR filter. Use a stem plot to view hn versus the time index n.

2.4 Notch Filter Removes Sinusoidal Interference

The ECG signal (plus interference) will be generated by the MATLAB function ECGmake.p. The function
ECGmake.p reads data from a file ECGdataS11.mat, changes the sampling rate, and then adds a sinusoidal
interference. These recorded ECG signals are shown in Fig. 2. The output of this function will depend on
your login ID—here is the calling template.

function [ecgsig,fs,fint] = ECGmake( IDstring, dur )
%
% ecgsig = vector of signal samples at fs samples/sec
% fint = frequency of the interfering sinusoid (near 50 or 60 Hz)
% IDstring = your login ID as a string, e.g., ’gburdell7’ or ’gtg555q’
% dur = duration of the signal (optional); default = 15 secs.

(a) Run ECGmake and note the values for the sampling rate .fs/ and interference frequency .fint/.

Instructor Verification (separate page)

(b) Design the IIR notch filter by specifying its poles and zeros. Explain how the angle .�/ of the poles
and zeros is determined by the interference frequency .fint/ and the sampling rate .fs/. Draw the
pole-zero diagram on the verification sheet.

(c) Compute the frequency response of the notch filter, and plot the frequency response magnitude versus
analog frequency f in Hz. Make a sketch of what you see on the screen (no print out is needed).
Verify that the notch filter will null out a sinusoid at the given interference frequency.

Instructor Verification (separate page)

(d) Convert the poles and zeros of the IIR notch filter to filter coefficients, so that you can write a differ-
ence equation for the filter.

Instructor Verification (separate page)

(e) Apply the notch filter to the ECG signal and show that you can remove all the interference. Make a
two-panel subplot comparing the time-domain signals before and after filtering. Show three or four
periods of the ECG at the same time in both signals.

Instructor Verification (separate page)
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(f) Show spectrograms of the signal before and after the notch filter. Point out where you see the interfer-
ence in the input signal’s spectrogram, and also where it has been removed in the output spectrogram.

Instructor Verification (separate page)

(a)

(b)

Figure 2: (a) The first ECG is very regular and follows the classic pattern. The P-wave, QRS complex,
and T-wave are labeled. The P-wave results from depolarization of the sinoatrial (SA) node in the heart,
leading to depolarization and contraction of the atrial cardiac muscle tissues. The QRS complex arises
from depolarization of the atrioventricular (AV) node and resulting depolarization and contraction of the
ventricular muscle tissue. The Q and S components of the complex are not always exhibited in a normal
ECG. The T-wave results from repolarization of the ventricular tissue. (b) The second ECG is nonstandard.
In place of the P and Q waves there is an irregular waveform. It appears that, in this case, the heart is in a
constant state of atrial fibrillation. This normally is not a problem, as the atria contribute very little to the
overall pumping ability of the heart, however it can present problems during strenuous exercise. (Recorded
and described by Georgia Tech students Josh Hammel and Chris Clarke, April 2006.)
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Lab: ECG Interference Removal
INSTRUCTOR VERIFICATION PAGE

Name: Date of Lab:

Part 2.1(a, b, c): Exhibit the allpass frequency response in PeZ and write out the numerator and denominator
of the system function so that jH.ej O!/j D 10:

H.z/D

Verified: Date/Time:

Part 2.4(a): Record the values of the sampling rate and interference frequency.

fs D fint D

-1 0 1
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Real part

Im
ag
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-
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jH.j2�f /j

f (Hz)

Parts 2.4(b, c): Plot the poles and zeros of your notch filter on the z-plane grid above. In addition, sketch
the frequency response in the space to the right of the pole-zero plot. Use a frequency range of 0 to fs=2.

Verified: Date/Time:

Part 2.4(d): List the filter coefficients of the IIR filter by filling in the IIR difference equation below.

yŒn�D yŒn�1�C yŒn�2�C xŒn�C xŒn�1�C xŒn�2�

Part 2.4(e): Apply the notch filter to the ECG signal and show that you can remove all the interference.
Show the two panel subplot that compares the time-domain signals before and after filtering. Zoom in to
verify that all interference has been removed completely, except for a short duration at the beginning.

Verified: Date/Time:

Part 2.4(f): Show spectrograms of the signal before and after nulling and explain how the filter affects the
frequency-domain characteristics of the signal.

Verified: Date/Time:
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