
DSP First 
Lab 11: PeZ - The z, n, and ωDomains 

 
The lab report/verification will be done by filling in the last page of this handout which addresses 
a list of observations to be made when using the PeZ GUI. 

1 Introduction & Objective 
The objective for this lab is to build an intuitive understanding of the relationship between the 
location of poles and zeros in the z-domain, the impulse response h[n] in the n-domain, and the 
frequency response ( )ω̂jeH  (the ω-domain).  A graphical user interface (GUI) called PeZ was 
written in LabVIEW for doing interactive explorations of the three domains1.  PeZ is based on 
the system function, represented as a ratio of polynomials in z-1, which can be expressed in either 
factored or expanded form as: 
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2 Warm-up 
If you have already installed the dspfirstLV toolbox2, you run PeZ in LabVIEW by selecting 
Help»Find Examples… and clicking on the Search tab and entering DSP. Double-click on DSP 
First and then click on Pez.  A control panel with a few buttons and a plot of the unit circle in 
the complex z-plane will pop up.  See Figure 1. 

 
Figure 1 The PeZ GUI.  This is for version 1.0.  Other versions may look different. 
 
Click the Run button and try the following.  You can selectively place poles and zeros in the z-
plane, and observe how their placement affects the impulse and frequency responses. Click the 

                                                 
1 The MATLAB version of PeZ was written by Craig Ulmer.  The LabVIEW version was written by Josiah A. Yoder. 
2 If you haven’t installed the toolbox, go to the CD-ROM and select Getting Started.  Follow the instructions there. 



PP button to add pole pairs.  The ZZ button adds zero pairs, and the PZ button added pole/zero 
quads (try it).  The other three buttons with –‘s removes poles/zeros.  (Try it). 
PeZ is in a mode such that an individual pole/zero (pair) can be moved around and the 
corresponding ( )ω̂jeH and h[n] plots will be updated as you drag the pole (or zero).  
Since exact placement of poles and zeros with the mouse is difficult, you can type the pole (or 
zero) location in the box below the list of poles (or zeros).  You can enter most any Matlab 
express, so entering a zero on the unit circle is as easy as entering 1*exp(j*2/3*pi) in the 
box.  Just be sure you also add the conjugate. 
Removal of individual poles (or zeros) can also be performed by clicking on the pole (or zero) 
location in the list and clicking Delete.  Note that all poles and/or zeros can be easily cleared by 
clicking on the –A button.  
Play around with PeZ for a few minutes to gain some familiarity with the interface.  Implement 
the following first-order system: 
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by placing its poles and zeros at the correct location in the z-plane.  First try placing the pole and 
zero with the mouse, and then use the box entry feature. 
What does the red line represent on the z-plane plot and the Magnitude and Phase plots?  Try 
rotating it on the z-plane plot. 

Instructor Verification (separate page) 

3 Relationships between z, n, and ω domains 
Work through the following exercises and keep track of your observations by filling in the 
worksheet at the end of this assignment.  In general, you want to make note of the following 
quantities: 
a) How does h[n] change with respect to its rate of decay?  For example, when 

h[n] = an u[n], the impulse response will fall off more rapidly when a is smaller. 
b) If h[n] exhibits an oscillation period, what is the period?  Also, estimate the decay rate of 

the “envelope.” 
c) How does ( )ω̂jeH  change with respect to peak location and peak width? 
Note: review the “Three-Domains – FIR” under the Demos link for chapter 7 and “Three-
Domains – IIR” under the Demos link for chapter 8 for examples of these relationships. 

4 Lab Exercise: Real Poles 
a) Use PeZ to place a single pole at

2
1

=z .  You may have to use the edit box to get the 

location exactly right.  Use the plots for this case as the reference for answering the next 
four parts. 

b) Move the pole close to the origin (still on the real axis).  You can do this by clicking on 
the pole and dragging it to the new location.  Describe the changes in the impulse 
response h[n] and the frequency response ( )ω̂jeH .  

c) The impulse response and frequency response plots are updated while you move a pole 
(or zero).  Click on the pole you want to move and start to drag it slowly.  Watch for the 



update of the plots in the secondary window.  Move the real pole slowly from to z = 1 
and observe the changes in the impulse response h[n] and the frequency response ( )ω̂jeH .  

d) Place the pole exactly on the unit circle (or maybe just inside at a radius of 0.99999999).  
Describe the changes in h[n] and ( )ω̂jeH .  What do you expect to see for ( )ω̂jeH ? 

e) Move the pole outside the unit circle.  Describe the changes in h[n].  Explain how the 
appearance of h[n] validates the statement that the system is not stable.  In this case, the 
frequency response ( )ω̂jeH  is not legitimate because the system is no longer stable.  

f) In general, where should poles be placed to guarantee system stability? By stability we 
mean that the system’s output does not blow up. 

5 Lab Exercise: Complex Poles and Zeros 
PeZ assumes real coefficients for the numerator and denominator polynomials.  Therefore, if we 
enter a complex pole or zero, PeZ will automatically insert second root at the conjugate location.  

For example, if we place a root at
2
1

3
1 jz += , then we will also get one at

2
1

3
1 jz −= . 

a) What property of the polynomial coefficients of A(z) = 1 - a1 z-1 - a2 z-2 will guarantee 
that the roots come in conjugate pairs? 

b) Clear all the poles and zeros from PeZ.  Now place a pole with magnitude 0.85 at an 
angle of 45º; and then two zeros at the origin.  Note that PeZ automatically places a 
conjugate pole in the z-domain.  The frequency response has a peak -- record the 
frequency (location) of this peak.  Hint:  Adjust the red ray on the z-plane. 

c) Change the angle of the pole: move the pole to 90º, then 135 º.  Describe the changes 
in ( )ω̂jeH .  Concentrate on the location of the peak. 

Next, we will put complex zeros on the unit circle to see the effect on ( )ω̂jeH . 
d) Clear all poles and zeros from PeZ.  Now place zeros at the following locations: z1 = -1, 

z2 = 0 - j and z3 = 0 + j (remember that conjugate pairs such as z2 and z3 will be entered 
simultaneously).  Judging from the impulse and frequency responses what type of filter 
have you just implemented?  

6 Lab Exercise: Filter Design 
In this section, we will use PeZ to place the poles and zeros of Hz to make a filter with a 
desirable frequency response.  Filter design is a process that selects the coefficients ak and bk to 
accomplish a given task.  The task here is to create a filter that has a very narrow “notch.”  This 
filter would be useful for removing one frequency component while leaving others undisturbed.  
The notch filter can be synthesized from the cascade of two simpler filters shown in Figure 2. 
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 Figure 2 Magnitude response of two unknown filters. Frequency axis is normalized πω /ˆ .  Use PeZ to help 
you find the filter coefficients that will match these frequency responses as closely as possible.  (a) Second-
order FIR filter. (b) Second-order IIR filter. 
a) Start the process by using PeZ to design each of the filters given in Figure 2.  (You will 

have to determine the locations of the poles and zeros from the plots in Figure 2.)  Both 
filters are second-order.  Make sure that you enter the poles and zeros precisely.  PeZ will 
do the conversion between root locations and polynomial coefficients.  You can check 
your results by also calculating the filter coefficients by hand (see the next section on 
polynomials with complex coefficients). Record the coefficients of your filters in the 
table provided. 
Note: Use PeZ or freqz to verify that the frequency response of each filter is correct. 

b) Now use PeZ to connect the filters together in a cascade.  Place the poles and zeros, and 
then view the frequency response.  Determine the filter coefficients for the overall 
cascaded filter Hz. 

c) Use freqz() to determine the frequency response of the cascade of the two filters that 
you “designed” in part (e).  Plot the magnitude of the overall frequency response of the 
cascade system for πωπ <<− ˆ , and print a copy of the plot for your lab report. Explain 
briefly why the frequency response magnitude has a notch, and explain why the gain (i.e., 

( )ω̂jeH  at 0ˆ =ω  and πω =ˆ  is the same.  

7 Filter Coefficients from Roots (Optional) 
Compute the filter coefficients for the denominator  and numerator 

 when the poles are: 
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p1=0.75ejπ/4
,  p2=0.75e-jπ/4

, 
and the zeros are: 

z1=1,  z2=-1 
  Use the following relationship: 
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where z1 and z2 are the zeros, and p1 and p2 are the poles defined above. Determine G so that the 
maximum magnitude of ( )ω̂jeH  is one.  (Remember that LabVIEW can multiply polynomials 
via its Multiply Polynomicals function.) 



Lab 11 
WORKSHEET 

Turn this page in at the end of your lab period. 
 
Name: ______________________________ Date of Lab: ________________________ 
 
Warm-up (Part 2): Implemented first-order system with PeZ: 

 Verified: _________________________ Date/Time: ____________________ 
 
Part Observations 
4(a) h[n] decays exponentially with no oscillations, ( )ω̂jeH  has a hump at 0ˆ =ω . 

 
4(b)  

4(c)  

4(d)  

4(e)  

4(f)  

5(a)  

5(b)  

5(c)  

5(d)  

 
Part 6 (a,b) ak bk
Filter 1   

Filter 2   

Cascade of 1 and 2   

 
Explanation of cascade frequency response: 
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