
ECE 380 
Mini-Project:  Frequency-Shift Keying Receiver 

 
 
Introduction 
The goal of this lab is to understand a simple modem, the Frequency Shift Keying (FSK) 
Modem, referred to by the International Telecommunications Union (I.T.U.) as V.21. 
Here is a quick recap of the operation of the v.21 FSK modem. The V.21 modem 
communicates 1’s and 0’s by sending either a 1650 Hz tone or a 1850 Hz tone, 
respectively, for 1/300 sec. Thus the overall data rate is 300 bits/second (one bit is sent in 
1/300-th of a second). Even though 300 bps is quite slow in comparison to the theoretical 
maximum of 56 kilobits per second over a phone line, the V.21 protocol is still used in 
almost every modem call, because receiving it is so simple. A V.21 modem call can be 
received without using difficult techniques such as equalizers, cancellers and matched 
filters. Furthermore, it can be received accurately even in the presence of a significant 
amount of noise. For these reasons, V.21 is used to perform the initial handshake between 
two modems, meaning that V.21 is a way to communicate some basic startup and control 
information between the two modems. You can hear the V.21 modem tones at home 
when your V34, V.90, V.92 phone line modem or fax machine starts a phone call. V.21 is 
also used to transmit caller ID information over the phone line. 
 
Modulator 
In the previous miniproject you built a FSK modulator for encoding text data into binary 
data and then into a FSK waveform. You can use your modulator to generate signals for 
this lab.  
 
Demodulator 
The receiver for V.21 must determine which of the two tones is present, and must make 
this decision every 1/300-th of a second. Furthermore, the receiver must synchronize with 
the bit interval, meaning that it must learn where the starting and ending times of each bit 
are located. This synchronization is essential to making reliable “0-1” decisions because 
the transition times must be avoided. A block diagram of the FSK V.21 demodulator is 
given in Fig. 1. Each of the main sections will be described in more detail below. 
 

 
Figure 1: Block diagram of the FSK V.21 demodulator. 

 



Mixing 
A basic operation that most modems need to perform is frequency shifting of the input 
signal. According to the frequency-shifting property of the Fourier Transform, this can be 
done by simply multiplying the input signal by a complex exponential. 

 
This effect can best be understood by thinking of x(t) as a sum of complex exponentials 
and observing what happens to each individual frequency component. In this case, x(t) is 

 
When x(t) is multiplied by the given complex exponential at frequency −fc Hz, the 
exponents simply add 
and the resulting w(t) is as follows: 

 
Note that the new frequencies in w(t) are simply the old frequencies shifted down (to the 
left on the f axis) by fc, i.e., f1 − fc and −f1 − fc. Also note that w(t) is complex so we no 
longer have the condition of complex conjugate symmetry between the two complex 
exponential components. This simply means that now our signal is really two signals: a 
real part signal and an imaginary part signal. If we want to filter this complex signal with 
a real filter, we simply filter the real part and the imaginary part separately with the same 
filter. In LabVIEW, the FIR filter VI does this very thing for you. The purpose of the 
filter is to remove the complex exponential with frequency −f1 − fc while leaving the 
other component whose frequency is f1 − fc. Thus, the filter output should be of the form  

 
where A will depend on the gain of the filter in its passband. For V.21 FSK, we will 
choose fc so that the original frequencies of +1650 Hz and +1850 Hz in x(t) are shifted to 
−100 Hz and +100 Hz respectively, and these are the frequencies passed by the filter. 
This is achieved by choosing fc = 1750. 
 
Discrete-Time Simulation 
The MATLAB implementation of the FSK V.21 modem is a simulation. This means that 
even though we seem to have continuous-time signals such as x(t) and w(t), we actually 
use sampled versions in the MATLAB program. For this simulation, we will choose the 
input sampling frequency to be  

1 
This value is chosen to be rather high so that the input signal will appear to be continuous 
in plots. In Fig. 2 the continuous-time signals have been replaced with their sampled 
versions, e.g., x(t) becomes x[n], w(t) becomes w[n], and so on. The complex exponential 
used in the mixer must also be converted from  to a discrete-time signal . What is 

 ? 

                                                 
1 You will have to modify your transmitter to work at fsamp = 9000 Hz.  This is done to avoid problems with 
noninteger numbers of samples per bit.  An “extra” you could add would be to make your transmitter and 
receiver work with noninteger numbers of samples per bit, such as 300 bps at fsamp = 8000 Hz. 



 
Figure 2: FSK system demodulator system simulated as a discrete-time system at a 

sampling rate of fsamp. 
 
Low Pass Filter Design 
The other thing that must be done in converting the block diagram of Fig. 1 to the 
simulation block diagram in Fig. 2 is to replace the analog filter by a digital filter. This 
filter must pass the band of frequencies equivalent to ±100 Hz, and it must remove the 
higher frequencies generated at the output of the mixer which are −fc − 1650 = −3400 and 
−fc − 1850 = −3600 Hz. You should already be familiar with some methods for designing 
FIR low pass filters with given specifications on the passband and stopband edges, as 
well as constraints on the ripple characteristics in the pass and stop bands. Such designs 
can be carried out in LabVIEW with the Digital Filter Design GUI, or with the filter 
design VIs. Since the digital filter is typically used to filter signals that are sampled 
analog signals, it is important to know how the bandedges of the digital filter can be 
expressed in terms of the desired analog cutoff frequencies. This can be done if the 
sampling frequency fsamp is known. For example, if we want to have a lowpass filter with 
an effective cutoff frequency of 2000 Hz, and we are using a digital filter running at 
fsamp = 8000 Hz, then the digital filter must have its cutoff frequency2 at 

  The suggested design programs handle this for you.  
In the FSK V.21 system, the frequency shifting of the mixer will generate spectrum lines 
that must be removed by filtering. If we demand that these unwanted spectrum 
components must be reduced in magnitude by a factor of 100, then we have given the 
specifications on the stopband ripple. A reduction by a factor of 100 means that the 
stopband ripple must be less than 0.01, or −40 dB. The passband, on the other hand, must 
be made wide enough so that the desired frequency components will go through the LPF 
with little or no change. Since the LPF’s frequency response will have a passband ripple, 
we will use a specification on the passband of 1 dB, which forces the passband magnitude 
to lie between 0.89 and 1.12. 
 

                                                 
2 Remember that the frequency response of a digital filter, )( ω̂jeH , is a function of the 
frequency variable ω̂  that runs from πω −=ˆ  to πω +=ˆ . 



Slicing 

 
Figure 3: Frequency estimation in a dual-frequency FSK system can be performed with a 

slicer. 
 

Another basic operation of most modems is to measure the frequency of a received tone. 
This could be accomplished by optimal filtering algorithms such as matched filters 
designed to enhance the tones of interest. However, if you are guaranteed to be looking at 
only one tone at a given time and the noise is not severe (both of which are true for 
V.21), then there is a simpler method that can be employed to save computation when 
measuring frequency. 
Slicing is defined as follows: 

 
It is a non-linear operation, but in the case where x[n] is a single cosine input, the filter 
output will be of the form njAeny 0ˆ][ ω= , where sampf/200ˆ0 πω m= . In this case, the 
output of the slicer reduces to 

 
After adding the exponents, the output simplifies to 

 
If the objective were to determine the frequency 0ω̂ , then it is sufficient to take the 
imaginary part 

 
and use d[n] to calculate the ArcSin(·) to get an estimate of 0ω̂ . However, the FSK V.21 
system is even simpler than that, because we only need to decode two cases: a zero or a 
one. When 0ω̂  < 0 we have a “1”, and when 0ω̂  > 0 we have a “0.” In addition, the sign 

of 0ω̂  is the same as the sign of )ˆsin( 0
2 ωA , so we only need to check the sign bit of d[n] 

to perform the decoding. As will be seen in the final implementation of this lab, the 
recovery of the V.21 signal reduces to discriminating between a +100 Hz tone and a −100 
Hz tone. Taking the imaginary part of s[n], the slicer output, will provide an easy way to 
determine whether a 1650 Hz or 1850 Hz tone was originally present. Thus we can define 
b[n] as an estimate of the bit that is represented by the slicer output at time n.  

 
In LabVIEW, you can use the sign VI to implement (3) by implementing the function 
(either in VIs or as a formula) 2/)1])[((][ +−= ndsignnb .  



 
Table 1: FSK Decoding Rule 

 
Decoding the Bits 
Now we must extract the bit information from the output signal d[n]. To get a better 
understanding of this problem, let us first describe the input signal to our demodulator 
system. Remember that the sampled waveform x[n] is a variable frequency sinusoid that 
can switch frequency every 30 samples (assuming bit rate of 300 bps and sampling rate 
of 9000 samples/sec) and the sinusoid switches between 1650 Hz to represent a 1 and 
1850 Hz to represent a 0. First of all, in any realistic simulation, the first part of the signal 
should be zero (or very small if there is noise); i.e., this part of the signal represents the 
time before the modem starts sending data. Then we will have a segment of the waveform 
that encodes a “preamble” and “marker flag” that will allow us to synchronize on the bits 
as well as the bytes. This part of the waveform will encode the bit string 
[110011001100110011111111]. The next part of the waveform will encode the bit 
sequence of the message data. Finally, the last part of the waveform encodes the “end 
marker”, which is the bit string [1111111111111111]. This is summarized in the 
following table:  

 
In our discrete-time simulation, the signal d[n] at the output of the slicer is either positive 
or negative at each sample time, and we have just seen that the sign of this signal is an 
indicator of whether a 1 or a 0 is being encoded at any particular sample time n. Now we 
should remember that if the bit rate is 300 bps and the sampling rate is 9000 Hz, this 
means that each bit of the encoded message is actually represented by a group of 30 
consecutive samples. Since the bits are transmitted at a uniform rate, this means that we 
only need to examine a sample of d[n] every 30 samples to determine the sequence of 
bits  that is encoded in the signal x[n] (or equivalently d[n]). The problem is to find out 
when the signal represents data and then to synchronize our sampling of the b[n] 
sequence so that we can not only find out what the bits are, but also be able to group the 
bits into 8 bit bytes so that we can decode the bit stream into ASCII characters. Basically, 
there are three steps: (1) finding the preamble that marks the beginning of the message, 
(2) synchronizing with the bit interval, and (3) grouping the bits into 8-bit sets to be 
converted into ASCII characters.  
 
Bit Synchronization 
The key to synchronization is that we have a known pattern of bits at the beginning of the 
message. We must take advantage of this to determine where the bits change state. The 
preamble and marker pattern [110011001100110011111111] begins after a period of 
silence (or noise). Thus we can expect an abrupt change at the beginning of this pattern 
and then a sequence of transitions from 1 to 0 and then from 0 to 1. If we do not count a 
transition at the beginning, we can expect 8 transtions between the beginning of the 
preamble and including the beginning of the marker bits [11111111]. We can use this 



knowledge of the signal structure to locate this pattern and then use this to anchor our 
search for the message bits. Thus, we want to begin by locating the transition points. A 
simple indicator of this would be 

 
This sequence should be +1 at each transition point. For noiseless signals in our 
simulation, these indicator points should be exactly 60 samples apart in the preamble part 
because it consists of four groups of two consecutive ones followed by two consecutive 
zeros, etc. In a practical situation, there may be some “jitter” in the locations that you 
might need to accommodate. In any case, if we locate the beginning of the signal, then 
after about 8 × 60 = 480 samples, we should find the eighth marker, which is the 
beginning of the group of eight 1s in the marker. 
 
Byte Synchronization 
The purpose of the marker section is to provide more reliability in grouping the bits into 
groups of 8 for ultimate decoding into ASCII symbols. Since there are eight 1s, the 
number of samples of b[n] between the last transition of the preamble (first transition of 
the marker) and the first transition of the message bits should be 8 × 30 = 240 samples in 
our simulation since at 300 bps and a sampling rate of 9000 Hz, each individual bit spans 
30 samples. Once the end of the group of marker bits has been found, we have achieved 
byte synchronization since from that point on, groups of 240 samples of b[n] are known 
to represent the eight bits of one ASCII symbol. 
 
Determining the Bit Sequence and forming Bytes 
After we have found the end of the marker, we can determine the sequence of bits by 
simply looking at the signal during each bit interval. Since each of these intervals is 30 
samples long, we can find the middle (where the answer is likely to be most robust) by 
simply “sampling” the sequence b[n] at a point that is offset by 15 samples from the 
beginning of each bit interval. Since the end of the marker interval is the beginning of the 
message bits, we can use as our estimate 

 
where nbeg is the sample location of the end of the marker bits (beginning of the message 
bits). The end of the message is marked by 16 consecutive 1s, which decode to 255, 255. 
Finally, after we have determined the sequence of bits and grouped them into bytes, we 
must convert the resulting binary number into ASCII symbols. This completes the 
decoding simulation. How to do this in the LabVIEW simulation is suggested below. 
 
Components 
The easiest way to build up a receiver is to build the component functions separately, 
then combine them to form the entire system.  In this section we will build up some of the 
component functions necessary for a full receiver. 
 
Binary Stream to ASCII 
The FSK decoder involves the operation of converting 8-bit patterns to ASCII. The 
LabVIEW VIs shown can convert a bit stream to ASCII. Try the following example: 



 
There are several stages of conversions in this example because we must convert to the 
correct datatype for the subsequent conversions.  The need to convert the byte into a 
single element array won’t be necessary when we have a list of bytes to convert.  In order 
to understand this example, you might want look at the context help for each of the VIs 
shown. They are “Greater Than Zero?”, “Boolean Array to Number,” “To Unsigned Byte 
Integer,” “Initialize Array,” and “Byte Array To String.”  You should probe the values to 
see the decimal value that matches the character.  Is the bit array being interpreted LSB 
first or MSB first? 
Modify the example above so that it can do more than one ASCII character. Complete the 
loop below:  

 
Check the byte values given to determine the ASCII values that should result. Note that 
the N input to the loop must be wired, and so must the index and length inputs on the 
Array Subset VI.  Finally, it is important that you disable indexing on the loop’s array 
input and enable indexing on the byte output. 
 
Mixing Moves the Spectral Lines 
The input signal to the mixer is a real sinusoid, so it has spectral lines at either ±1650 Hz, 
or ±1850 Hz. The mixer multiplies by a complex exponential, tje )1750(2π− . For both input 
cases, determine the location of all the spectral lines after mixing.  Recall from the 
Fourier transform properties the effect of multiplying by a complex exponential. 
 
LPF Design 
After mixing, the signal of interest is either +100 Hz or −100 Hz. Since the sampling rate 
is fsamp = 9000 Hz, the desired passband of the LPF can be calculated in the ω̂  domain: 
call the result pω̂ . The stopband of the digital LPF must be chosen to remove the extra 
spectral lines at the output of the mixer. Determine the stopband cutoff frequency that 
will be needed to remove these extra spectral lines. Design the digital FIR lowpass filter 



that will have these bandedges. Make the stopband ripple less than −40 dB, and the 
passband ripple less than 1 dB. The FIR filter that will meet these specs is rather short — 
determine its length, i.e., number of filter coefficients. If you use either the Digital Filter 
Design GUI or the FIR Windowed Filter VI, you can work directly with the analog 
frequencies, once you enter fsamp = 9000 Hz into the GUI. 
 
Test the Mixer 
In this section you will need to use your encoder to generate test signals.  First test the 
encoder with the mixer and the lowpass filter to be sure that the output of the filter is a 
complex exponential with either +100 Hz or -100 Hz frequency. 

(a) You must use the filter design specified in the previous section. 
(b) Use your encoder with bps = 300, and fsamp = 9000 to create an FSK signal for a 

bit stream. You can make the string sent something simple like ‘Test.’ 
(c) Process the FSK signal created in the previous part through the mixer (with fc = 

1750 Hz) and the lowpass filter that you designed above. Make a plot of the real 
part of the output signal in the time domain so you can see how the bits change. 

(d) It is possible to view the spectrogram of the input and output of the lowpass filter, 
but some care is needed. First of all, for the 300 bps signal, an extremely short 
window length is needed, e.g. 30, because the bit duration is only 30 samples at 
fsamp = 9000 Hz. You can set the window length at the bottom of the spectrogram 
tab in the TripleDisplay.  You also need to set the time increment to 1.  A 
complex spectrogram VI has been provided on Angel.  It converts the complex 
signal into a real signal whose spectrum can be displayed in a TripleDisplay. 
Create an indicator from its output, and set the spectrogram settings there. The 
complex input signal extends from 0 to fsamp, so negative frequency components 
actually show up at high frequencies. For example, −2000 Hz would show up at 
9000 − 2000 = 7000 Hz when fsamp = 9000 Hz. 

 
Slicer Implementation 
The objective of this section is to implement the slicer and show that it gives a constant 
output when the input is a single-frequency complex exponential. 
(a) For the input to the slicer, use the filtered output signal from the previous section. Or, 
if you are unsure of that output, make a test signal by synthesizing y[n] as a single 
complex exponential: 

 
Find the correct value for 1ω̂  from fs = 9000 Hz and f1 = 100 Hz. 
 
(b) Note that y[n − 1] can easily be obtained from y[n] by with a delay of one sample. 
Recall that the filter VI will keep the vectors the same size, and the correct FIR filter 
coefficients used to create y[n − 1] are easy to determine: 
 
(c) Now s[n] (the slicer output) can be obtained by using the Complex Conjugate VI in 
LabVIEW. Plot the imaginary part of the slicer output and compare this to the predicted 
value which is a constant: 

 



 
Putting the Pieces Together 
In the Components section, you should have completed the implementation of all parts of 
the FSK demodulator, so the only thing left is the “decoder” that will synchronize on the 
bits and group them into 8-bit bytes. 
 
Transmitter/Modulator 
You should use your own FSK transmitter to generate the test signals you need. The 
transmitter/modulator must be set to run at a sampling rate of 9000 Hz. A realistic 
simulation would use 8000 Hz because phone lines are 8000 Hz, but 9000 Hz keeps our 
sampling rate an integer multiple of 300 which is our symbol/bit rate. One useful test 
message is ’@U ’ because it contains runs of consecutive zeros, consecutive ones, and 
also alternating zeros and ones. As an “extra” you could add an optional input parameter 
to your transmitter that will allow you to add noise to the FSK signal for a more realistic 
simulation. It is probably a good idea to begin your program development and initial 
testing with no noise. 
 
Synchronize on the Bits 
You should extend your simulation that you developed in the Components Section to 
include the computation of the signal b[n] as given above. Use the FSK Modulator to 
produce a test signal for a very short message, and run that signal through a program 
consisting of the mixer, LPF and slicer to produce the output b[n] which are the detected 
zeros and ones obtained from d[n]. For testing the synchronization algorithm that you 
will write, you will concentrate on the front end of b[n] where the preamble is found. 
Since b[n] is sampled at fsamp = 9000 Hz, each bit interval lasts for 30 samples and each 
pair of ones and each pair of zeros in the preamble lasts for 60 samples. The goal here is 
to find the transitions (or jumps) in b[n], which also correspond to sign changes in d[n].  
This could be accomplished with a for loop. A good starting point is to compute the 
transitions in b[n] using the “transition” signal p[n].  Note that p[n] can be computed 
using a simple FIR filter and an absolute value.  Ideally these transitions should be 
exactly 60 samples apart in the preamble region of p[n]. 
 
Code for Synchronization 
The goal of bit synchronization is to reduce the many samples per bit present in b[n] 
down to just a single sample per bit, representing the originally sent bit sequence.  To do 
this, we must identify a sample near the middle of each bit.  Since the bps of the 
transmitted signal determines how far apart our sample times should be (30 samples per 
bit in this example), we only need to know a relative shift from the beginning of the file 
to the center of a bit.  This quantity is unknown if we don’t know how much silence 
could be present before the transmitter turns on. 
With p[n], you can identify the beginning of each bit transition, and each one should be a 
multiple of one bit-time apart.  Since we know the bps of the transmitter, we only need to 
know how many samples to skip to get to the middle of a bit time.  A simple way to 
accomplish this is to divide the sequence p[n] into segments one bit-time long, and add 
them up.  If each segment begins one bit-time later than the last (tricky if the samples per 
bit isn’t an integer), then the transitions will all happen at about the same shift and index 



of the largest value of the sum will be the correct number of samples to skip to find the 
beginning of each bit-time in the file.  Of course, we want to skip to the middle of each 
bit, not to the beginning. 
 

 
 

The code above uses a while loop and sums one bit-length chunks of p[n] until the end of 
the signal.  It is enough to find just a few transitions, but you must be sure to run long 
enough to get past any silence before the preamble.  In a real streaming system, this bit 
synchronization would need to be adjusted regularly, since two independent clocks are 
never exactly the same frequency, but for a short message, we can just synchronize once. 
 
Add your own code to sample values from b[n] in the middle of each bit-time.  At this 
point, you may be including invalid bits from silence, the preamble bits, the message bits, 
and the terminator bits.  We will locate the preamble and terminator sequences in the next 
section.  
 
Get the Message Text 
The final step of the decoder is to turn the bit patterns back into text. Consult the Binary 
Stream to ASCII Section above for the code needed to do this efficiently. Recall that the 
FSK transmitted data is organized as follows:  

  
 
One way to locate the preamble and terminator is using an FIR filter directly on the 
bitstream data.  When convolving a time reversed copy (pattern[-n]) of the desired 
pattern with the bitstream, the output will be maximized when all the data bits match the 
pattern bits.  The index of the maximum value will locate the desired pattern in the data 
stream, and the data between the preamble and the terminator will be the desired data 
message.  In the code example shown below, the time reversal is not apparent due to 
symmetry. 



 
 
Three test messages are supplied in the FSK Receiver Test Data VI. For the first one, 
only the data bits are given as 1’s and 0’s; the second one contains all of b[n] including 
the preamble.  The b[n] values are given as 1’s and -1’s instead of 1’s and 0’s.  It is easy 
to convert them if you choose to. You should be able to verify that you have correctly 
recovered the data for both of these. You can use the first test to check that your “bits to 
ASCII” code is working. The second one will allow you to test your code for detecting 
the preamble and terminator and extracting the message data. Then you are ready to run 
the entire FSK demodulator/decoder to recover a message from the last test message 
which is an FSK signal having the same data format as shown above, but this time you 
will have to demodulate the signal to get the data unlike the first two test messages that 
gave you the transmitted data bits. This is the waveform constant. Please note that the 
DATA portion of each message is actually text, so you should get something that is 
readable as a sentence in English. If you correctly group the received data into bytes (8 
bits), and convert each byte into its ASCII character you will be able to read the 
messages. 
 
The test messages are provided at both the fsamp = 8000 Hz rate and the fsamp = 9000 Hz 
rate. 
 

What’s Due 

This miniproject is optional. You will get extra credit for completing it well. 
 
For this mini-project you are to work on your own.  You may discuss your ideas with 
others, but you may not share LabVIEW files.  The policy stated on the Homework 
Procedures handout under “Responsibility” applies to this and other mini-projects. 
 
What is due: 
1. A brief memo describing what you did.  Be sure to have a sentence or two intro and 

conclusion.   
2. Plots of the specgram or sketches of the spectrum for the signals into the mixer, out of 

the mixer, and after the LPF. 



3. A plot of b[n] showing where the decisions will be made, based on the 
synchronization that found the middle of the bit interval. 

4. A description of your technique for synchronizing the bits and bytes, based on your 
knowledge of the training signal and the data flags. 

5. A comparison of the received bits to the transmitted pattern for a simple case. These 
ought to be identical when there were no distortions, which is the (unrealistic) 
condition for this miniproject. 

6. Print out your LabVIEW code.  Selecting File→Print will start a print wizard.  When 
you reach the “Print Contents” window, select “Icon, description, panel, and 
diagram.”  This will print out the whole works in a compact format.  

A hard copy of the memo and LabVIEW printout are to be handed in at the start of class 
on Thursday, May 24. 
 
Supplementary Thoughts 
In this lab we built a modem, a digital form of communication, which is generally 
speaking far superior to analog communication. The magic of digital is that if the bits are 
recovered correctly (and there are a variety of advanced techniques to achieve this), then 
all the distortions of the channel, noise, and modem imperfections along the way are 
effectively eliminated. In this lab, the digital magic occurs when the decision is made to 
convert the slicer output d[n] into b[n] which is either a 0 or a 1 bit. A cell phone is a 
good example of the magic of digital. In spite of the horrible channel between you and 
the cell tower (which is changing as you cruise down the interstate while talking on your 
cell phones) and all the ambient noise, the data bits can be heavily encoded and recovered 
properly, thus achieving digital quality. 
 
The system described in this miniproject handout is adequate to decode a low noise, low 
distortion signal captured as a single array of sample data.  However, real systems often 
must detect whether the transmitter is on or not, and run on continuous streams of data, in 
noisy and distorted environments.  With further modification, it would be possible to 
convert the system you have already created into an “air chat” device that sent text 
messages over the speakers of your computer to another computer where the system 
would have to continuously “listen” to the microphone input to watch for the preamble, 
then display a message whenever one was detected.  The received signal would be much 
noisier and more distorted after passing through a real channel, but should still be 
workable at low bitrates and short distances.  If you try this, you should be aware that the 
microphones on some laptops are limited to fairly low frequency inputs, so check your 
input signal carefully and do not assume your laptop is “hearing” what you hear. 


