Example 10-16: Consider the following system

$$
y[n]=y[n-1]-y[n-2]+2 x[n]+2 x[n-1]
$$

whose system function is

$$
\begin{equation*}
H(z)=\frac{2+2 z^{-1}}{1-z^{-1}+z^{-2}}=\frac{2\left(1+z^{-1}\right)}{\left(1-e^{j \pi / 3} z^{-1}\right)\left(1-e^{-j \pi / 3} z^{-1}\right)} \tag{10.13}
\end{equation*}
$$

A pole-zero plot for this $H(z)$ was already given in Fig. ??. Using the partial fraction expansion technique, we can write $H(z)$ in the form

$$
H(z)=\frac{\left(\frac{2+2 e^{-j \pi / 3}}{1-e^{-j 2 \pi / 3}}\right)}{1-e^{j \pi / 3} z^{-1}}+\frac{\left(\frac{2+2 e^{j \pi / 3}}{1-e^{j 2 \pi / 3}}\right)}{1-e^{-j \pi / 3} z^{-1}}=\frac{2 e^{-j \pi / 3}}{1-e^{j \pi / 3} z^{-1}}+\frac{2 e^{j \pi / 3}}{1-e^{-j \pi / 3} z^{-1}}
$$

The right-hand side is the sum of two first-order terms for which entry 6 in Table ?? applies with $a=e^{j \pi / 3}$ and $a=e^{-j \pi / 3}$. The individual terms are complex conjugates, so their sum is purely real:

$$
h[n]=2 e^{-j \pi / 3} e^{j(\pi / 3) n} u[n]+2 e^{j \pi / 3} e^{-j(\pi / 3) n} u[n]=4 \cos ((2 \pi / 6)(n-1)) u[n]
$$

The two complex exponentials with frequencies $\pm \pi / 3$ combine to form the cosine. The impulse response is plotted in Fig. ??.

