Example 3-2: The plots in Fig. ?? illustrate several points about the spectrum for the sum of two signals. The spectrum of $x_{1}(t)$ is shown in Fig. ??(a), and the spectrum of $x_{2}(t)$ in Fig. ??(b). When adding the spectra, we see that both spectra have components at the frequencies $f= \pm 7$ and 0 , so three phasor additions must be done.

$$
\begin{aligned}
3+3 e^{j \pi} & =0 & & (\text { at } f=0) \\
4 e^{-j \pi / 4}+4 e^{j \pi / 4} & =4 \sqrt{2} & & (\text { at } f=-7) \\
4 e^{j \pi / 4}+4 e^{-j \pi / 4} & =4 \sqrt{2} & & (\text { at } f=7)
\end{aligned}
$$

Since the complex amplitudes at $f=0$ cancel out, there is no DC component in the sum spectrum of Fig. ??(c). The spectrum for $x_{1}(t)$ has components at $f= \pm 2$, but the spectrum for $x_{2}(t)$ does not, so those components are copied directly to the sum spectrum. Likewise, the components at $f= \pm 5$ in the spectrum for $x_{2}(t)$ are also copied to the sum spectrum.

