EXERCISE 8.8: Use Euler's relation to represent the signal $x[n]=A \cos \left(2 \pi k_{0} n / N\right)$ as a sum of two complex exponentials. Assume k_{0} is an integer. Use the fact that the DFT is a linear operation and the periodicity of the DFT coefficients to show that its DFT can be written as

$$
X[k]=\frac{A N}{2} \delta\left[k-k_{0}\right]+\frac{A N}{2} \delta\left[k-\left(N-k_{0}\right)\right] \quad k=0,1, \ldots N-1
$$

