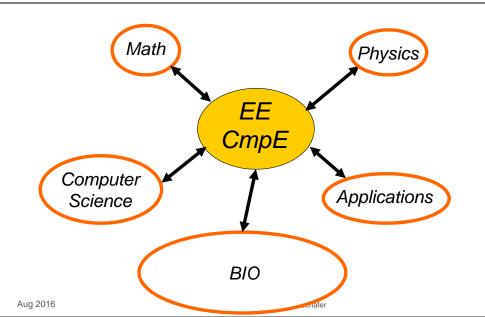
DSP First, 2/e

LECTURE #1 Sinusoids


READING ASSIGNMENTS

- This Lecture:
 - Chapter 2, Sections 2-1 and 2-2
- Chapter 1: Introduction
- Appendix B: MATLAB
- Review Appendix A on Complex Numbers

Aug 2016

© 2003-2016, JH McClellan & RW Schafer

CONVERGING FIELDS

COURSE OBJECTIVE

- Students will be able to:
- Understand mathematical descriptions of signal processing algorithms and express those algorithms as computer implementations (MATLAB)
- What are your objectives?

Aug 2016 © 2003-2016, JH McClellan & RW Schafer

5

WHY USE DSP?

- Mathematical abstractions lead to generalization and discovery of new processing techniques
- Computer implementations are flexible
- Applications provide a physical context

Aug 2016

© 2003-2016, JH McClellan & RW Schafer

6

Fourier Everywhere

- Telecommunications
- Sound & Music
 - CDROM, Digital Video
- Fourier Optics
- X-ray Crystallography
 - Protein Structure & DNA
- Computerized Tomography
- Nuclear Magnetic Resonance: MRI
- Radioastronomy
- Ref: Prestini, "The Evolution of Applied Harmonic Analysis"

Aug 2016

© 2003-2016, JH McClellan & RW Schafer

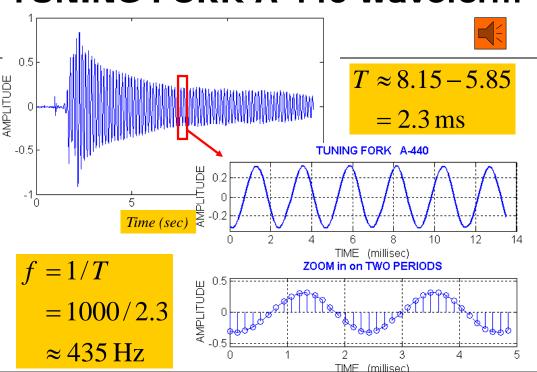
_

LECTURE OBJECTIVES

- Write general formula for a "sinusoidal" waveform, or signal
- From the formula, plot the sinusoid versus time
- What's a signal?
 - It's a function of time, x(t)
 - in the mathematical sense

TUNING FORK EXAMPLE

CD-ROM demo



- "A" is at 440 Hertz (Hz)
- Waveform is a SINUSOIDAL SIGNAL
- Computer plot looks like a sine wave
- This should be the mathematical formula:

 $A\cos(2\pi(440)t+\varphi)$

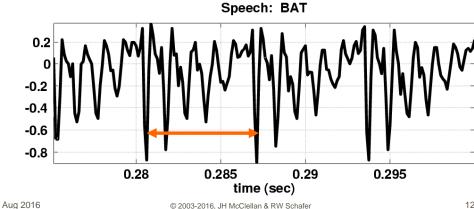
© 2003-2016, JH McClellan & RW Schafe

TUNING FORK A-440 Waveform

SPEECH EXAMPLE

More complicated signal (BAT.WAV)

- Waveform x(t) is NOT a Sinusoid
- Theory will tell us
 - x(t) is approximately a sum of sinusoids
 - FOURIER ANALYSIS
 - Break x(t) into its sinusoidal components
 - Called the FREQUENCY SPECTRUM


Aug 2016

© 2003-2016, JH McClellan & RW Schafe

Speech Signal: BAT

- Nearly <u>Periodic</u> in Vowel Region
 - Period is (Approximately) T = 0.0065 sec

DIGITIZE the WAVEFORM

- x[n] is a SAMPLED SINUSOID
 - A list of numbers stored in memory
- Sample at 11,025 samples per second
 - Called the SAMPLING RATE of the A/D
 - Time between samples is
 - 1/11025 = 90.7 microsec
- Output via D/A hardware (at F_{samp})

Aug 2016

STORING DIGITAL SOUND

- x[n] is a SAMPLED SINUSOID
 - A list of numbers stored in memory
- CD rate is 44,100 samples per second
- 16-bit samples
- Stereo uses 2 channels
- Number of bytes for 1 minute is
 - 2 X (16/8) X 60 X 44100 = 10.584 Mbytes

Aug 2016

© 2003-2016, JH McClellan & RW Schafe

SINES and COSINES

Always use the COSINE FORM

$$A\cos(2\pi(440)t+\varphi)$$

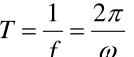
Sine is a special case:

$$\sin(\omega t) = \cos(\omega t - \frac{\pi}{2})$$

Aug 2016

© 2003-2016, JH McClellan & RW Schafe

SINUSOIDAL SIGNAL


$A\cos(\omega t + \varphi)$

- FREQUENCY (1)

 - Radians/sec
 - Hertz (cycles/sec)

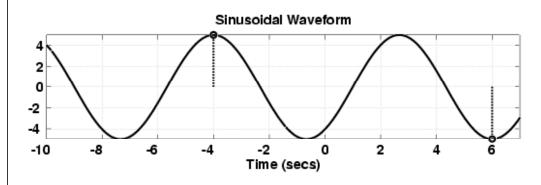
$$\omega = (2\pi)f$$

PERIOD (in sec)

AMPLITUDE

Magnitude

PHASE



EXAMPLE of SINUSOID

Given the Formula

$$5\cos(0.3\pi t + 1.2\pi)$$

Make a plot

PLOT COSINE SIGNAL

$5\cos(0.3\pi t + 1.2\pi)$

Formula defines A, ω, and φ

$$A = 5$$

$$\omega = 0.3\pi$$

$$\varphi = 1.2\pi$$

Aug 2016

© 2003-2016, JH McClellan & RW Schafer

18

from the FORMULA

$$5\cos(0.3\pi t + 1.2\pi)$$

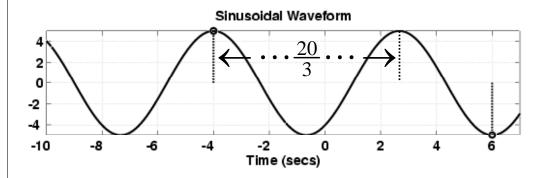
PLOTTING COSINE SIGNAL

Determine <u>period</u>:

$$T = 2\pi / \omega = 2\pi / 0.3\pi = 20/3$$

Determine a <u>peak</u> location by solving

$$(\omega t + \varphi) = 0 \implies (0.3\pi t + 1.2\pi) = 0$$


- Zero crossing is T/4 before or after
- Positive & Negative peaks spaced by T/2

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 19

PLOT the SINUSOID

$$5\cos(0.3\pi t + 1.2\pi)$$

Use T=20/3 and the peak location at t=-4

