

May 2016

Spatial Aliasing

DISCRETE-TIME SINUSOID

Change x(t) into x[n] **DERIVATION** $x(t) = A\cos(\omega t + \varphi)$ $x[n] = x(nT_s) = A\cos(\omega nT_s + \varphi)$ $x[n] = A\cos((\omega T_s)n + \varphi)$ $x[n] = A\cos(\hat{\omega}n + \varphi)$ $\hat{\omega} = \omega T_s = \frac{\omega}{f}$ DEFINE DIGITAL FREQUENCY May 2016 15 © 2003-2016, JH McClellan & RW Schaf

 $2\pi(0.1)$

20

25

 $\hat{\omega}$

30

DIGITAL FREQUENCY is NORMALIZED

16

5

10

15

Time (msec)

SAMPLING GUI (con2dis)

SPECTRUM (FOLDING CASE)

FOLDING DIAGRAM

STROBE DEMO (Synthetic)

