DSP First, 2/e

Lecture 9
Sampling & Aliasing

READING ASSIGNMENTS

This Lecture:
Chap 4, Sections 4-1 and 4-2

Other Reading:
Recitation: Strobe Demo (Sect 4-5)
Next Lecture: Chap. 4, Sects. 4-3 and 4-4
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LECTURE OBJECTIVES

SYSTEMS Process Signals

SAMPLING can cause ALIASING
Sampling Theorem
Sampling Rate > 2(Highest Frequency)

Spectrum for digital signals, x[n]
Normalized Frequency
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PROCESSING GOALS:
Change x(t) into y(t)
For example, more BASS, pitch shifting
Improve x(t), e.g., image deblurring
Extract Information from x(t)
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System IMPLEMENTATION

SAMPLING x(t)

ANALOG/ELECTRONIC:

Circuits: resistors, capacitors, op-amps

X(t t
L' ELECTRONICS A

DIGITAL/MICROPROCESSOR

Convert x(t) to stored in memory

x(®
— A-to-D
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» COMPUTER > D-to-A ————

SAMPLING PROCESS
Convert x(t) to x[n]
“n” is an integer index; x[n] is a sequence of values
Think of “n” as the storage address in memory

UNIFORM SAMPLING att = nT,
IDEAL: X[n] = x(nT,)

X(®)
— C-to-D—
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SAMPLING RATE, fg

STORING DIGITAL SOUND

SAMPLING RATE (f,)
f, =1/T,
NUMBER of SAMPLES PER SECOND

T,= 125 microsec - f, = 8000 samples/sec
UNITS of f, ARE HERTZ: 8000 Hz

UNIFORM SAMPLING at t = nT= n/f,
IDEAL: x[n] = x(nT)=x(n/f,)

X » C-to-D > X(nTS)
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X[n] is a SAMPLED SISIGNAL

A list of numbers stored in memory
EXAMPLE: audio CD
CD rate is 44,100 samples per second

16-bit samples
Stereo uses 2 channels

Number of bytes for 1 minute is
2 X (16/8) X 60 X 44100 = 10.584 Mbytes
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(a) Continuous Waveform: x () = cos(27(100)7)

f =100Hz IW

SAMPLING THEOREM
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(b) Sampled: x(nTy) = cos(2m(100)n T), with T =
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(c) Sampled: x(nT) = cos(2x(100)n Ty), with T :@
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vay 4 Which one provides the most accurate representation of x(t)?

HOW OFTEN DO WE NEED TO SAMPLE?
DEPENDS on FREQUENCY of SINUSOID
ANSWERED by SHANNON/NYQUIST Theorem
ALSO DEPENDS on “RECONSTRUCTION"

Shannon Sampling Theorem
A continuous-time signal x(f) with frequencies no higher than f,.x can be

reconstructed exactly from its samples x[gl.= x(nT;), if the samples are taken
atarate f, = 1/7, that is greater thay
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Reconstruction? Which One?

Be careful...
https.//www.youtube.com/watch?v=qgvuQGY946g

Given the samples, draw a sinusoid through the values

Two continuous cosine functions drawn through the same samples

AR LA AR AA A ATAN]
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0
Time Index Axis,n

X[n] = cos(0.47zn)  Whennis an integer
c0s(0.4 zn) = cos(2.4 n)

Occam’s razor -> pick lowest frequency sinusoid
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Spatial Aliasing

DISCRETE-TIME SINUSOID

14

Change x(t) into x[n] DERIVATION
X(t) = Acos(wt + @)
X[n] = x(nT,) = Acos(wnT, + @)

X[n] = Acos((eT,)n + @)

X[n] = Acos(wh + @)

S )
W = a)TS o f_ DEFINE DIGITAL FREQUENCY

S
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DIGITAL FREQUENCY @

SPECTRUM (DIGITAL)

_2

w = oT,
f

S

0'3 VARIES from O to 27, as f varies from
0 to the sampling frequency

UNITS are radians, not rad/sec
DIGITAL FREQUENCY is NORMALIZED
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c?):27zi
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027 27(0.1) 7

f, =1kHz

X[n]= Acos(27(100)(n/1000) + @)

100-Hz Cosine Wave: Sampled with 7 = 1 msec (1000 Hz)
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SPECTRUM (DIGITAL) ??7? The REST of the STORY
f 1 X* ? ix .
= 27ff— 2 ' 2 Spectrum of x[n] has more than one line for
: ‘ ‘ each complex exponential
f =100 Hz | 5 Called
X[n] = Acos(27(100)(n/100) + ¢)
100-Hz Cosine Wave: Sampled with 7 = 10 msec (100 Hz)
| ' | ' | ' \ SPECTRUM is PERIODIC with period =
% " \ """ / /\\ """ ///\ """"""" Because
E _05 | _ ~ =
< 0_? . x[n] is zero frequency??? , \/, _ ACOS(C()n + ¢) = ACOS((C() + 27[[)” + (D)
0 5 10 15 20 25 30
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ALIASING DERIVATION ALIASING DERIVATION
Other Frequencies give the same @ Other Frequencies give the same @
X, (t) = cos(400~t) sampledat f, =1000Hz If x(t) = Acos(27z(f + ¢ f)t+p) te
¥,[n] = cos(4007 ;) = cos(0.47n) R fe
X, (t) = cos(2400zt) sampledat f, =1000Hz and we want : X[n] - ACOS(a)n T gp)
X,[Nn] = cos(24007-2) = cos(2.47n) then * & = 2r(f +1f) _ 2r f " 2l
X,[N] = cos(2.4zn) =cos(0.4zn + 27zn) = cos(0.4zn) 1:s fs fs
= X;[n]=x[n] 24007 — 4007 = 27(1000) o = wT, = 27; f Y
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ALIASING CONCLUSIONS

SPECTRUM for x[n]

May 2016

Adding an INTEGER multiple of f, or —f to
the frequency of a continuous sinusoid x(t)
gives exactly the same values for the
sampled signal x[n] = x.(n/f)

GIVEN x[n], we CAN'T KNOW whether it came
from a sinusoid at f,or (f, +f,) or (f, + 2f,) ...
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PLOT versus NORMALIZED FREQUENCY

INCLUDE SPECTRUM LINES

ALIASES
ADD MULTIPLES of 2%
SUBTRACT MULTIPLES of 2n
FOLDED ALIASES
(to be discussed later)
ALIASES of NEGATIVE FREQS
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SPECTRUM (MORE LINES)

SPECTRUM (ALIASING CASE)

fl ix Ly* 1y Ly* F1ix"  iX Ly* 1y Ly* 1y
S5—2-_ | 2 2 2 2 A 2 2 2 2 2 2
o =2r f | | GS 2= |
S | : |
} " | 7
f. =1kHz —grr 2”% T Z80KHZ -1.57 0.57 257
X[n] = Acos(272(100)(n /1000) + ¢) x[n] = Acos(27(100)(n/80) + ¢)
100-Hz Cosine Wave: Sampled with 7 = 1 msec (1000 Hz) 100-Hz Cosine Wave: Sampled with T = 12.5 msec (80 Hz)
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SAMPLING GUI (con2dis)

Input: x(t) =

cos (27(16.8)t + 1.05)

x[n] = cos (27(0.84)n + 1.05) Output: x(t)

= cos(27 (3.2)t — 1.05)
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SPECTRUM (FOLDING CASE)
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X[n]= Acos(27(100)(n/125) + @)

100-Hz Cosine Wave: Sampled with 7, = 8 msec (125 Hz)
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STROBE DEMO (Synthetic)
Folding of Frequencies About % fs _ _
CONSTANT DISK. SPEED: CONATANT SPEED: COMNSTANT SPEED:
2500 T T - T HO ALIASTHE FOLDING ALTASING
N
<
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