DSD First 2/0	 READING ASSIGNMENTS This Lecture: Chapter 5, Sections 5-4, 5-6, 5-7 & 5-8 Section 5-5 is covered, but not "in depth" Convolution in Section 5-7 is important 						
DSP First, 2/e Lecture 12 Linearity & Time-Invariance							
LECTURE OBJECTIVES	Aug 2016 © 2003-2016, JH McClellan & RW Schafer 3						
 GENERAL PROPERTIES of FILTERS LINEARITY TIME-INVARIANCE TIME-INVARIANCE BLOCK DIAGRAM REPRESENTATION Components for Hardware Connect Simple Filters Together to Build More Complicated Systems 	 IMPULSE RESPONSE, h[n] FIR case: same as {b_k} CONVOLUTION GENERAL: y[n] = h[n] * x[n] GENERAL CLASS of SYSTEMS LINEAR and TIME-INVARIANT ALL LTI systems have h[n] & use convolution 						

© 2003-2016, JH McClellan & RW Schafer

5

Aug 2016

Aug 2016

x[n] has only one NON-ZERO VALUE

1

© 2003-2016, JH McClellan & RW Schafer

• x[n] = SINUSOID

UNIT-IMPULSE

Later, sinusoid leads to the FREQUENCY RESPONSE

 $\delta[n] =$

n=0

 $n \neq 0$

n

10

Aug 2016

UNIT IMPULSE RESPONSE

 FIR filter <u>DIFFERENCE EQUATION</u> is specified by the filter coefficients b_k

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

 <u>EQUIVALENCE</u>: can we describe the filter using a <u>SIGNAL</u> instead?

© 2003-2016, JH McClellan & RW Schafer

11

FIR IMPULSE RESPONS	SE
---------------------	----

- Impulse response h[k]=b_k is, in fact, a SIGNAL description of filter coefficients
- Allows us to write CONVOLUTION sum

LTI: Convolution Sum

- Output = Convolution of x[n] & h[n]
 - NOTATION: y[n] = h[n] * x[n]
 - FIR case:

Aug 2016

Aug 2016

	r 7		r 7		<u>г</u> л	
v	n	= h	n	* 1	n	
<i>y</i>		10		~	נייןי	

16

LTI: Convolution Sum

 Delay the signal x[n] & then multiply by filter coefficients that come from h[n]

 $y[n] = \sum_{k=0}^{M} h[k] x[n-k]$

Aug 2016

$$= h[0]x[n] + h[1]x[n-1] + h[2]x[n-2] + \dots$$

CONVOLUTION Exa $\frac{y[n] = \sum_{k=0}^{n} h[k]x[n-k]}{\sum_{k=0}^{n} h[k]x[n-k]}$

 $h[n] = \delta[n] - \delta[n-1] + 2\delta[n-2] - \delta[n-3] + \delta[n-4]$ x[n] = u[n]

	п	-1	0	1	2	3	4	5	6	7
	x[n]	0	1	1	1	1	1	1	1	•••
	h[n]	0	1	-1	2	-1	1	0	0	0
h[0]x[n]	0	1	1	1	1	1	1	1	1
h[1]x[n	-1]	0	0	-1	-1	-1	-1	-1	-1	-1
h[2]x[n	-2]	0	0	0	2	2	2	2	2	2
h[3]x[n	-3]	0	0	0	0	-1	-1	-1	-1	-1
h[4]x[n]	-4]	0	0	0	0	0	1	1	1	1
Aug 2016	<i>y</i> [<i>n</i>]	0	1	0	2	1	2	2	2	••••

GENERAL CAUSAL FIR FILTER

© 2003-2016, JH McClellan & RW Schafer

DCONVDEMO: MATLAB GUI

POP QUIZ

POP QUIZ

© 2003-2016, JH McClellan & RW Schafer

22

Aug 2016

(a)

(c)

 $= x_1[n] + x_2[n]$

© 2003-2016, JH McClellan & RW Schafe

FIR STRUCTURE

SYSTEM PROPERTIES

© 2003-2016, JH McClellan & RW Schafer

26

Aug 2016

Aug 2016

30

