DSD First 2/0	READING ASSIGNMENTS
DSP First, 2/e Lecture 16a FIR Filter Design via Windowing	 This Lecture: Chapter 7, Sects 7-3 and 7-4
	Aug 2016 © 2003-2016, JH McClellan & RW Schafer 3
Lecture Objectives	Windows
Approximate ideal filters	 Finite-Length signal (L) with positive values <u>Extractor</u> <u>Rectangular Window</u>
Introduce the concept of windowing	• <u>Truncator</u> $W_{r}[n] = \begin{cases} 0 & n < 0 \\ 1 & 0 \le n < L \end{cases} \qquad W_{r}[n]$
Truncate ideal h[n] with a window	$\begin{bmatrix} 0 & n \ge L \\ 0 & 0 \end{bmatrix} \xrightarrow{n} 0$
Filter specs: ripples & band edges	$w_{r}[n]x[n+n_{0}] = \begin{cases} 0 & n < 0\\ x[n+n_{0}] & 0 \le n < L\\ 0 & n \ge L \end{cases}$
Aug 2016 © 2003-2016, JH McClellan & RW Schafer 4	Aug 2016 © 2003-2016, JH McClellan & RW Schafer 5

Window Truncates Ideal h[n]

• sinc is inverse DTFT of ideal LPF $\begin{aligned} & \mu[n] = \frac{\sin(\hat{\omega}_b n)}{\pi n} = -\infty < n < \infty \\ & = 1 \\ &$

Demo of filterdesign GUI

- Show filter designs in the following order:
 - Set fs=2, and cutoff freq = 0.4
 - Rectangular Window: M=20, M=40, M=200
 - Show Slide to define passband & stopband
 - Show Slide with Template for Filter Design Specs
 - Hamming Window: M=20, M=40
 - Need to reset cutoff when Window Type is changed.
 - Hamming Window for L=40 in dB (click Magnitude)
 - Hamming Window for L=40, zoom in on passband
 - Hamming Window: M=200
 - Same for von Hann?

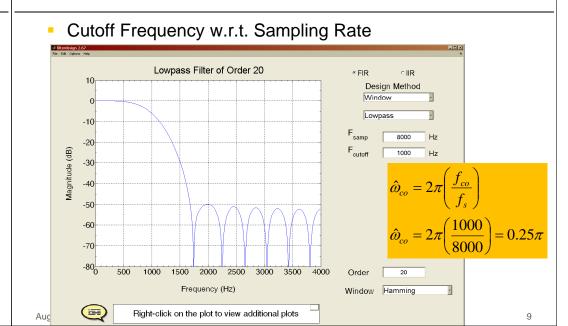
 $g_{co} = 2\pi \left(\frac{f_{co}}{f_s}\right)$ $g_{co} = 2\pi \left(\frac{0.4}{2}\right) = 0.4\pi$

8

Window Filter Design

- Plot of Length-21 Hamming window $u_m[n] = \begin{cases} 1 & \text{for } 0 & \text{for } 0 \\ 0.54 & -0.46 \cos(2\pi(n)/(L-1)) & 0 \le n < L \\ 0 & n \ge L \end{cases}$

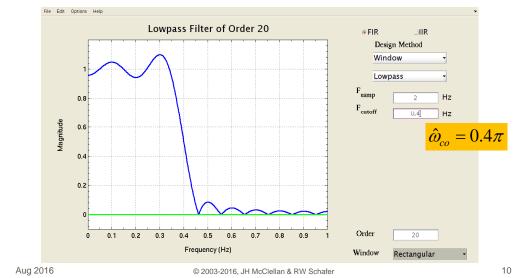
Filter Design GUI



© 2003-2016, JH McClellan & RW Schafer

Filter Design via Rectangular Windowing (L=21)

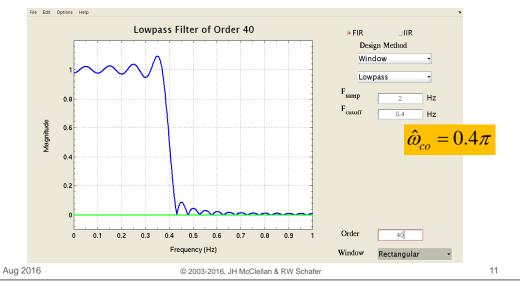
Rectangular Window, L=21 (order M=20)



Filter Design via Rectangular Windowing (L=201)

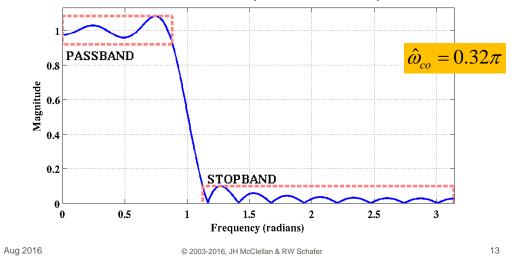
Filter Design via Rectangular Windowing (L=41)

Rectangular Window, L=41 (order M=40)



Filter Design: Define Passband & Stopband

- Rectangular Window, L=201 (order M=200) File Edit Options Help Lowpass Filter of Order 200 • FIR DIR Design Method Window Lowpass sami Hz 0.8 0.4 Hz Magnitude 0.6 $\hat{\omega}_{co} = 0.4\pi$ 0.4 0.2 0.1 0.2 0.3 0.6 Order 200 0.4 0.5 0.7 0.8 n۹ Frequency (Hz) Window Rectangular Aug 2016 © 2003-2016. JH McClellan & RW Schafer 12
- Rectangular Window, L=41 (order M=40)
 LOWPASS FILTER (ideal cutoff at 0.32π)



Ripples, Band edges, & Transition Width

- Passband Ripple is one plus or minus δ_n
- Stopband Ripple is less than δ_s
- Band edges are $\hat{\omega}_p, \hat{\omega}_s$

PASSBAND

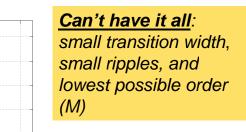
0.5

Magnitude

• Transition Width $\Delta \omega = \hat{\omega}_s - \hat{\omega}_p$

LOWPASS FILTER (ideal cutoff at 0.32π)

1.5

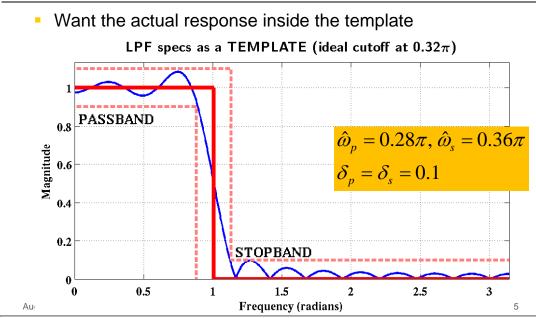


14

Hamming Window applied to ideal LPF impulse response

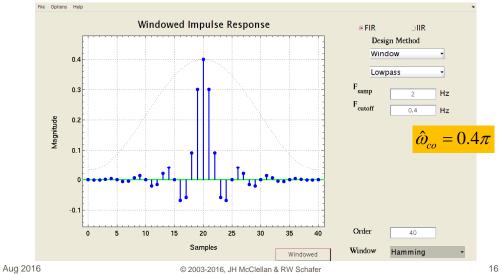
Schafe

Filter Design: Tolerance Template



Filter Design with Hamming Window (L=21)

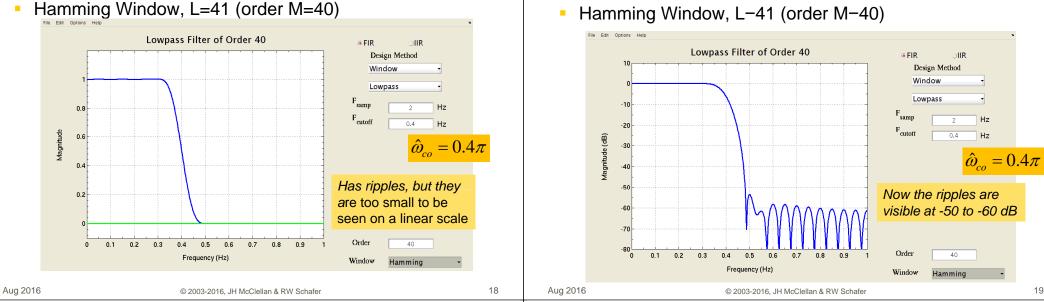
Hamming Window, L=41 (order M=40)



Hamming Window, L=21 (order M=20)

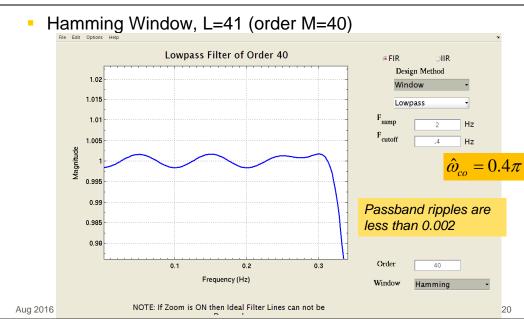
Filter Design with Hamming Window (L=41)

Hamming Window LPF (L=41) Log Magnitude



Hamming Window, L-41 (order M-40)

Filter Design: zoom on passband ripples



High Order FIR Filter Design with Hamming Window

Hamming Window, L=201 (order M=200)

Hamming FIR Filter Design Ripples and Band Edges

- Transition width is inversely proportional to L
- Ripples do not change with L
- Another window called the Kaiser window can control the ripple height
 - But passband ripple = stopband ripple
- Optimization methods such as PMFIR can control both ripples and the transition width

© 2003-2016, JH McClellan & RW Schafer

22