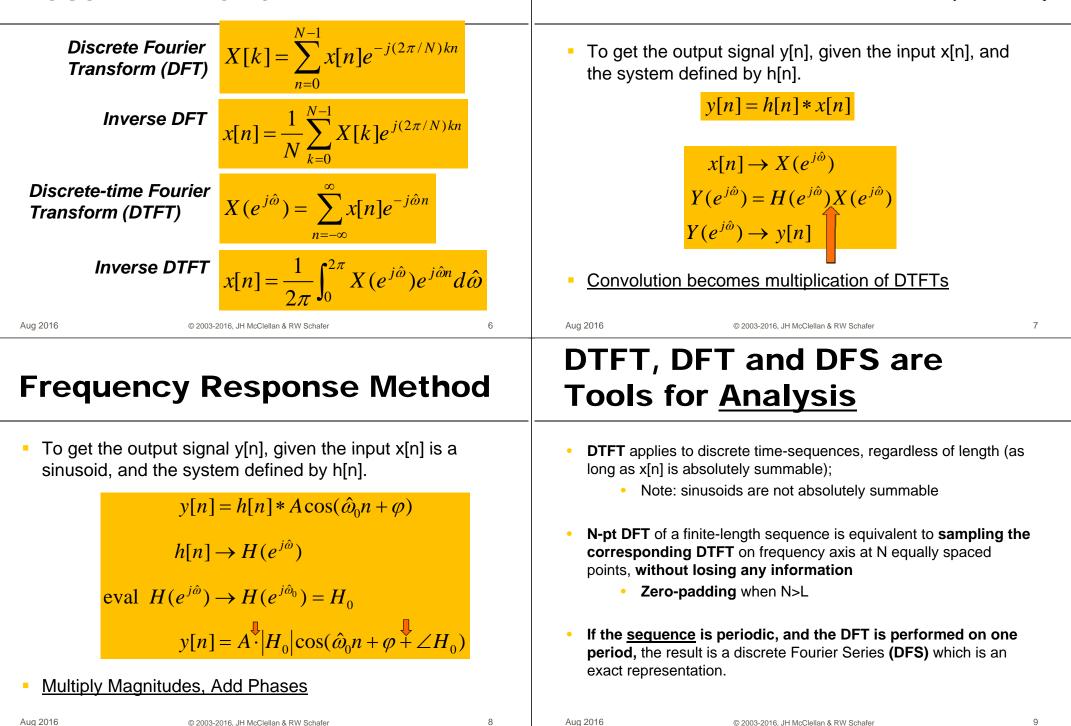
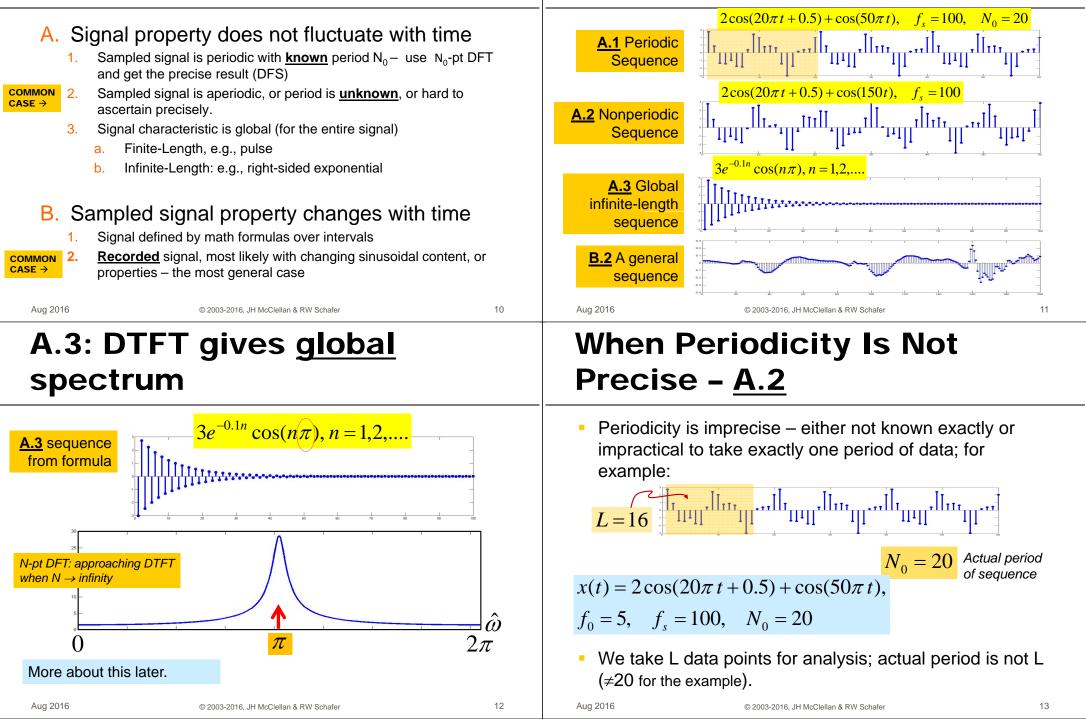
READING ASSIGNMENTS		
 This Lecture: Chapter 8, Sects. 8-6 & 8-7 Other Reading: FFT: Chapter 8, Sect. 8-8 		
© 2003-2016, JH McClellan & RW Schafer 3		
rete Fourier Transform (DFT)		
$\sum_{n=0}^{N-1} x[n]e^{-j(2\pi/N)kn} x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k]e^{j(2\pi/N)kn}$ is <u>frequency sampled</u> DTFT For finite-length signals computation is actually done via FFT T of zero-padded signal->more freq samples sform pairs & properties (DTFT & DFT)		

Recall: DFT and DTFT



The Transform Method (DTFT)

Various Situations in Signal Analysis

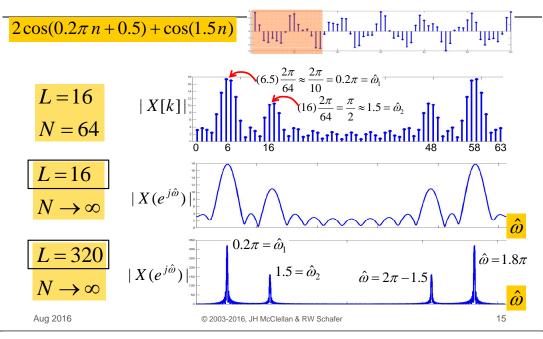


Examples

Imprecise Period Example (2)

L = 16 $\sum_{N_0 = 20}^{n} (6.5) \frac{2\pi}{64} \approx \frac{2\pi}{10} = 0.2\pi = \hat{\omega}_1$ $(16) \frac{2\pi}{64} = 0.5\pi = \hat{\omega}_2$ $(16) \frac{2\pi}{64} = 0.5\pi = \hat{\omega}_2$

Similar Example – Changing L



Observations

- When signal property stays fixed, the longer the section of data (larger L), the sharper the frequency resolution.
- The larger the number of points for the DFT, N, the denser the frequency axis sampling.
- However, the <u>resolution</u> (or separation) of sinusoids w.r.t. frequency is determined by the data length L, not by length of the N-pt DFT (with zero padding).
- When signal properties change with time, there are other considerations that limit the size of L; see case <u>B</u>.

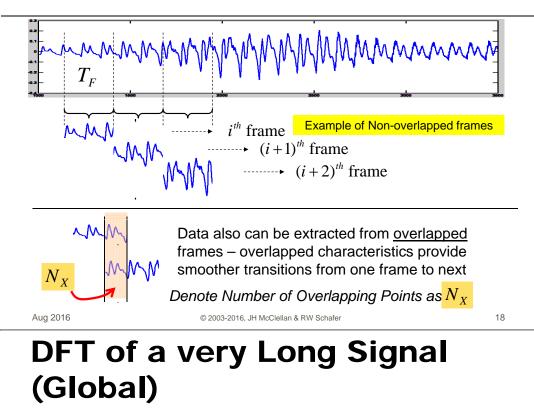
Case B - The General Case

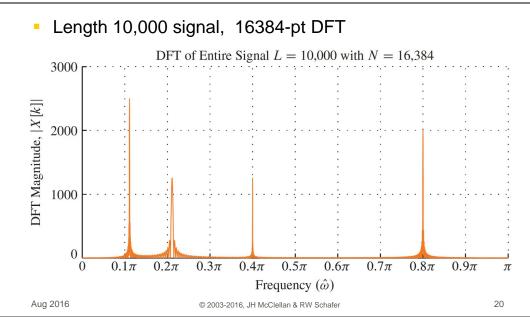
- DFT can also be used as a tool for finding the spectral composition of an arbitrary signal:
 - In general, we observe changing signal properties
 - Short-time analysis framework
 - Analyze sequence one block (frame) of data at a time using DFT
 - Successive blocks of data may overlap
 - "SPECTROGRAM"

16

Aug 2016

FRAME = WINDOW of DATA





A very long signal

- Four intervals
- Four spectrum lines

	$\int 5\cos(0.211\pi n)$	$0 \le n \le 499$
	$2\cos(0.111\pi n)$	$500 \le n \le 2999$ $3000 \le n \le 4999$
	$2\cos(0.8\pi n)$	$3000 \le n \le 4999$
	$\left(\frac{1}{2}\cos(0.4\pi n)\right)$	$5000 \le n \le 99999$

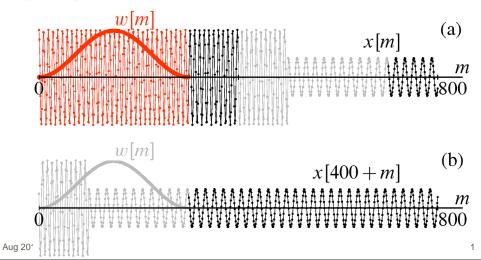
Aug 2016

© 2003-2016, JH McClellan & RW Schafe

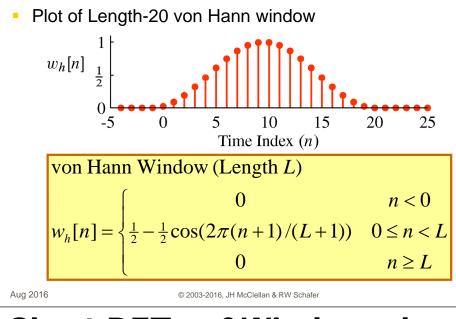
19

Windowing a Long Signal

Long signal is time-shifted into the domain of the window,
 [0,300] in this case



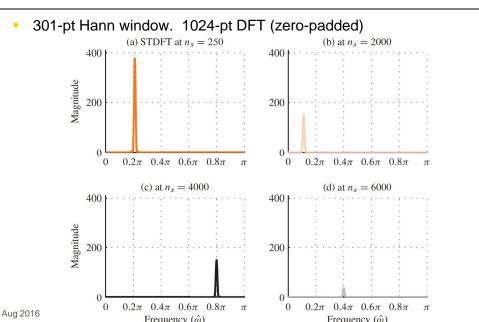
Von Hann Window in Time Domain



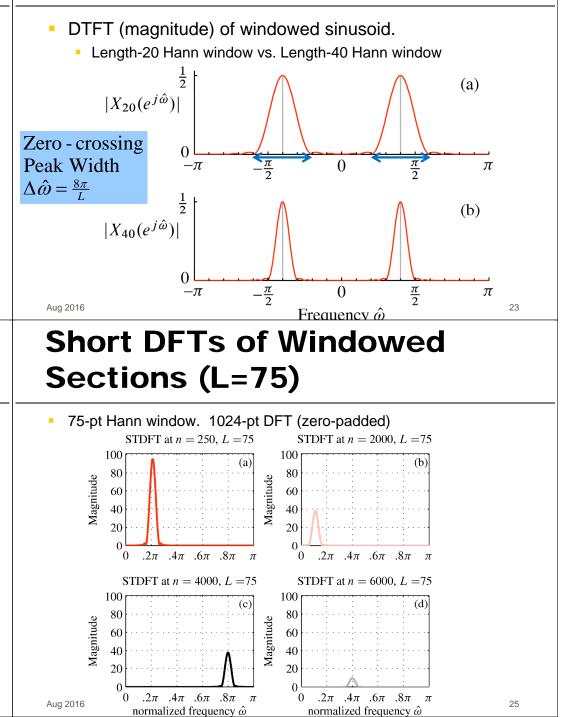
22

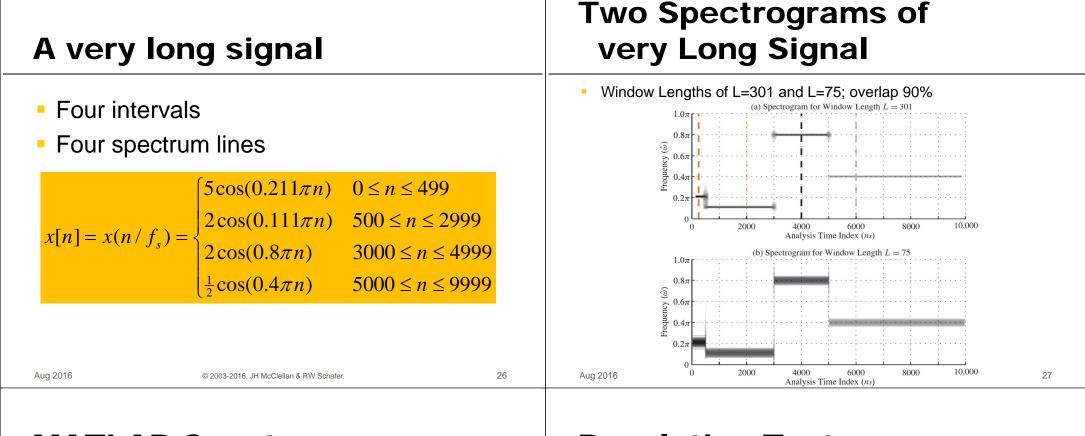
24

Short DFTs of Windowed Sections (L=301)



DTFT of Hann Window: Change Length





MATLAB Spectrogram

- In MATLAB, use
- S = spectrogram(X,WINDOW,NOVERLAP,NFFT,Fs,'yaxis')
 - **Fs** is the sampling frequency specified in samples/s
 - WINDOW:
- if a vector, extract segments of x of equal length, and then multiply window vector and data vector, element by element;
- If an integer, same as above but use a Hamming window of the specified length
- if unspecified, use default
- NOVERLAP: (<WINDOW)
 - Number of overlapping data between successive frames
- ✓ NFFT: Length of FFT

Resolution Test

- Closely spaced frequency components
 - How close can the lines be?
 - Depends on window (section) length
 - Inverse relationship

	$\cos(0.2\pi n) + 1.5\cos(0.227\pi n)$	$0 \le n \le 4999$
$x[n] = x(n / f_s) =$	$\cos(0.2\pi n)$	$5000 \le n \le 6999$
	$3\cos(0.6\pi n) + \cos(0.7\pi n)$	$7000 \le n \le 9999$

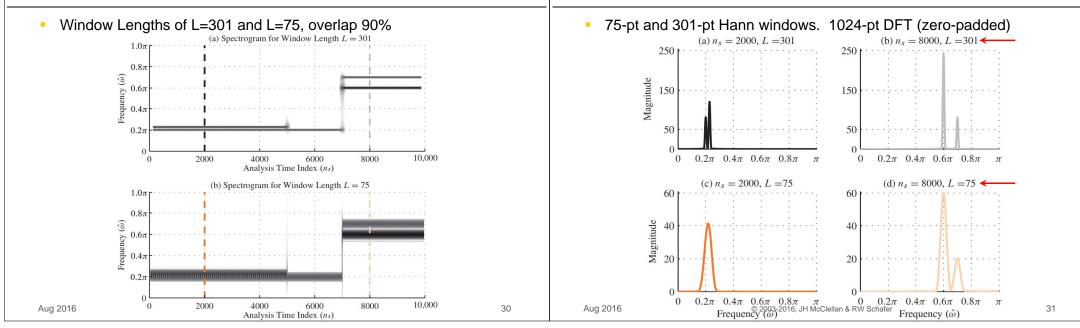
 $\cos(0.2\pi n) + 1.5\cos(0.227\pi n) \Longrightarrow \Delta\hat{\omega} = 0.027\pi = 8\pi/?$

 $3\cos(0.6\pi n) + \cos(0.7\pi n) \Rightarrow \Delta\hat{\omega} = 0.1\pi = 8\pi/80$

28

Aug 2016

Two Spectrograms: Resolution Test



Short DFTs of Windowed Sections