DSP First, 2/e

Lecture 22
IIR Filters: Feedback
and H(z)

Aug 2016

© 2003-2016, JH McClellan & RW Schafer

Aug 2016

© 2003-2016, JH McClellan & RW Schafe

LECTURE OBJECTIVES

- INFINITE IMPULSE RESPONSE FILTERS.
 - Define IIR DIGITAL Filters
 - Filters with <u>FEEDBACK</u>
 - use PREVIOUS OUTPUTS
 - Show how to compute the output y[n]
 - Derive Impulse Response h[n]
 - Derive z-transform: $h[n] \leftarrow \rightarrow H(z)$

READING ASSIGNMENTS

- This Lecture:
 - Chapter 10, Sects. 10-1, 10-2, & 10-3
- Other Reading:
 - Optional: Ch. 10, Sect 10-4
 - FILTER STRUCTURES

THREE DOMAINS

© 2003-2016, JH McClellan & RW Schafer

 Aug 2016
 © 2003-2016, JH McClellan & RW Schafer
 5
 Aug 2016

Quick Review: Delay by n_d

Quick Review: L-pt Averager

Difference Equation

$$y[n] = x[n - n_d]$$

IMPULSE RESPONSE

$$h[n] = \delta[n - n_d]$$

$$H(z) = z^{-n_d}$$

$$H(e^{j\hat{\omega}}) = e^{-j\hat{\omega}n_d}$$

Aug 2016

© 2003-2016, JH McClellan & RW Schafer

7

Difference Equation

$$y[n] = \sum_{k=0}^{L-1} \frac{1}{L} x[n-k]$$

IMPULSE RESPONSE

$$h[n] = \sum_{k=0}^{L-1} \frac{1}{L} \delta[n-k]$$

SYSTEM FUNCTION

$$H(z) = \sum_{n=0}^{L-1} \frac{1}{L} z^{-n}$$

Frequency RESPONSE

$$H(e^{j\hat{\omega}}) = \frac{1}{L} e^{-j\frac{L-1}{2}\hat{\omega}} \frac{\sin(\frac{L}{2}\hat{\omega})}{\sin(\frac{1}{2}\hat{\omega})}$$

Aug 2016

© 2003-2016, JH McClellan & RW Schafer

Recall: CASCADE Equivalent

Motivation: <u>DE</u>convolution

Multiply the System Functions

Ex: Remove optical blur in postprocessing?

Original Image

Blurred (Motion)

© 2003-2016, JH McClellan & RW Schafer

) Restored w/ Inverse Filter

 Aug 2016
 © 2003-2016, JH McClellan & RW Schafer
 9
 Aug 2016

Deconvolution Filter

- System to remove optical blur in postprocessing
- Given h₁[n], can we find h₂[n] to make y[n] equal to s[n]?

$$\begin{array}{c}
s[n] \\
h_1[n] \\
\hline
 & h_2[n] \\
\hline
 & x[n] \\
\hline
 & x[n] = s[n] * h_1[n] \\
y[n] = s[n] * h_1[n] = s[n] * h_1[n] * h_2[n] \\
\Rightarrow h_1[n] * h_2[n] = \delta[n]
\end{array}$$

Aug 2016

© 2003-2016, JH McClellan & RW Schafer

11

Deconvolution in Z-DOMAIN

$$x[n] = s[n] - as[n-1] \Rightarrow h_1[n] = \delta[n] - a\delta[n-1]$$

- Hard to solve for h₂[n] in convolution sum
- z-domain? $Y(z) = H_2(z)H_1(z)S(z) = H(z)S(z)$

$$H_{1}(z) \xrightarrow{x[n]} H_{2}(z) \xrightarrow{y[n]}$$

$$H_{2}(z) = 1 = H_{2}(z)H_{1}(z)$$

$$\Rightarrow H_{2}(z) = 1/H_{1}(z)$$

$$H_{1}(z) = 1 - az^{-1}$$

$$\Rightarrow H_{2}(z) = \frac{1}{1 - az^{-1}}$$

Aug 2016

Aug 2016

© 2003-2016, JH McClellan & RW Schafe

IIR FILTERS

- IIR = <u>infinite impulse response</u>; the impulse response h[n] has infinite length
- FIR: is a weighted sum of inputs, so the current output value does not involve previous output values, only the input values
- IIR: the current output value involves previous output values (feedback) as well as input values

First Order IIR – ONE FEEDBACK TERM

ADD PREVIOUS OUTPUTS

$$y[n] = a_1 y[n-1] + b_0 x[n] + b_1 x[n-1]$$

$$a_0 = 1$$

$$FEEDBACK$$
FIR PART of the FILTER
FEED-FORWARD

 CAUSALITY: NOT USING FUTURE OUTPUTS or INPUTS

FILTER COEFFICIENTS

ADD PREVIOUS OUTPUTS

$$y[n] = 0.8y[n-1] + 3x[n] - 2x[n-1]$$

SIGN CHANGE

MATLAB

yy = filter([3,-2],[
$$\frac{1}{3}$$
,-0.8],xx)

$$|y[n] - 0.8y[n-1] = 3x[n] - 2x[n-1]|$$

Aug 2016

© 2003-2016, JH McClellan & RW Schafer

15

COMPUTE OUTPUT

$$y[n] = 0.8y[n-1] + 5x[n]$$

Aug 2016

Aug 2016

© 2003-2016, JH McClellan & RW Schafer

COMPUTE y[n]

FEEDBACK DIFFERENCE EQUATION:

$$y[n] = 0.8y[n-1] + 5x[n]$$

NEED y[-,1] to get started

$$y[0] = 0.8y[-1] + 5x[0]$$

AT REST CONDITION

- y[n] = 0, for n<0
- BECAUSE x[n] = 0, for n < 0

INITIAL REST CONDITIONS

- **1.** The input must be assumed to be zero prior to some starting time n_0 , i.e., x[n] = 0 for $n < n_0$. We say that such inputs are *suddenly applied*.
- **2.** The output is likewise assumed to be zero prior to the starting time of the signal, i.e., y[n] = 0 for $n < n_0$. We say that the system is *initially at rest* if its output is zero prior to the application of a suddenly applied input.

COMPUTE y[0]

THIS STARTS THE RECURSION:

With the initial rest assumption, y[n] = 0 for n < 0, y[0] = 0.8y[-1] + 5(2) = 0.8(0) + 5(2) = 10

SAME with MORE FEEDBACK TERMS

$$y[n] = a_1 y[n-1] + a_2 y[n-2] + \sum_{k=0}^{2} b_k x[n-k]$$

Aug 2016 © 2003-2016, JH McClellan & RW Schafer

COMPUTE MORE y[n]

CONTINUE THE RECURSION:

$$y[1] = 0.8y[0] + 5x[1] = 0.8(10) + 5(-3) = -7$$

 $y[2] = 0.8y[1] + 5x[2] = 0.8(-7) + 5(0) = -5.6$
 $y[3] = 0.8y[2] + 5x[3] = 0.8(-5.6) + 5(2) = 5.52$
 $y[4] = 0.8y[3] + 5x[4] = 0.8(5.52) + 5(0) = 4.416$
 $y[5] = 0.8y[4] + 5x[5] = 0.8(4.416) + 5(0) = 3.5328$

y[6] = 0.8y[5] + 5x[6] = 0.8(3.5328) + 5(0) = 2.8262

Continues @ (0.8)ⁿ⁻³

No more input

Aug 2016

© 2003-2016, JH McClellan & RW Schafe

PLOT y[n] (infinite length)

IMPULSE RESPONSE

$y[n] = a_1 y[n-1] + b_0 x[n] \Rightarrow h[n] = a_1 h[n-1] + b_0 \delta[n]$

n	n < 0	0	1	2	3	4
$\delta[n]$	0	1	0	0	0	0
h[n-1]	0	0	b_0	$b_0(a_1)$	$b_0(a_1)^2$	$b_0(a_1)^3$
h[n]	0	b_0	$b_0(a_1)$	$b_0(a_1)^2$	$b_0(a_1)^3$	$b_0(a_1)^4$

From this table it is obvious that the general formula is

$$h[n] = \begin{cases} b_0(a_1)^n & \text{for } n \ge 0 \\ 0 & \text{for } n < 0 \end{cases} \qquad h[n] = b_0(a_1)^n u[n]$$
$$u[n] = 1, \text{for } n \ge 0$$

Aug 20

© 2003-2016, JH McClellan & RW Schafer

22

IMPULSE RESPONSE

DIFFERENCE EQUATION:

$$y[n] = 0.8y[n-1] + 3x[n]$$

Find h[n]

$$h[n] = 3(0.8)^n u[n]$$

CONVOLUTION in TIME-DOMAIN

PLOT IMPULSE RESPONSE

Infinite-Length Signal: h[n]

POLYNOMIAL Representation

$$H(z) = \sum_{n=-\infty}^{\infty} h[n]z^{-n}$$
APPLIES to
Any SIGNAL

SIMPLIFY the SUMMATION in IIR

$$H(z) = \sum_{n=-\infty}^{\infty} b_0(a_1)^n u[n] z^{-n} = b_0 \sum_{n=0}^{\infty} a_1^n z^{-n}$$

Derivation of H(z)

Recall Sum of Geometric Sequence:

Yields a COMPACT FORM

$$\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}$$

$$H(z) = b_0 \sum_{n=0}^{\infty} a_1^n z^{-n} = b_0 \sum_{n=0}^{\infty} (a_1 z^{-1})^n$$
$$= \frac{b_0}{1 - a_1 z^{-1}} \quad \text{if } |z| > |a_1|$$

 $H(z) = z\text{-Transform}\{h[n]\}$

FIRST-ORDER IIR FILTER:

$$y[n] = a_1 y[n-1] + b_0 x[n]$$

$$h[n] = b_0(a_1)^n u[n]$$

$$H(z) = \frac{b_0}{1 - a_1 z^{-1}}$$

The impulse response is infinitely long.
But, the filter is specified by only a few coefficients —
The order is finite.

Aug 2016

© 2003-2016, JH McClellan & RW Schafer

27

Find H(z) from DE via ALGEBRA

$$y[n] = a_1 y[n-1] + b_0 x[n]$$

$$3\{ y[n] \} = a_1 3\{ y[n-1] \} + b_0 3\{ x[n] \}$$

$$Y(z) = a_1 z^{-1} Y(z) + b_0 X(z)$$

$$Y(z) - a_1 z^{-1} Y(z) = Y(z)(1 - a_1 z^{-1}) = b_0 X(z)$$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{b_0}{1 - a_1 z^{-1}}$$

Aug 2016

© 2003-2016, JH McClellan & RW Sch

--

 $H(z) = z-Transform\{h[n]\}$

ANOTHER FIRST-ORDER IIR FILTER:

$$y[n] = a_1 y[n-1] + b_0 x[n] + b_1 x[n-1]$$

$$h[n] = b_0(a_1)^n u[n] + b_1(a_1)^{n-1} u[n-1]$$

 z^{-1} is a shift

$$H(z) = \frac{b_0}{1 - a_1 z^{-1}} + \frac{b_1 z^{-1}}{1 - a_1 z^{-1}} = \frac{b_0 + b_1 z^{-1}}{1 - a_1 z^{-1}}$$

Aug 2016 © 2003-2016, JH McClellan & RW Schafer

STEP RESPONSE: x[n]=u[n]

$$y[n] = a_1y[n-1] + b_0x[n]$$

n	x[n]	y[n]	> 0
n < 0	0	$0 \qquad u[n] = 1, \text{ for } n$	<u>∠ 0</u>
0	1	b_0	
1	1	$b_0 + b_0(a_1)$	
2	1	$b_0 + b_0(a_1) + b_0(a_1)^2$	
3	1	$b_0(1+a_1+a_1^2+a_1^3)$	
4	1	$b_0(1 + a_1 + a_1^2 + a_1^3 + a_1^4)$	30
			30

DERIVE STEP RESPONSE

$$y[n] = b_0(1 + a_1 + a_1^2 + \dots + a_1^n) = b_0 \sum_{k=0}^n a_1^k$$

$$\sum_{k=0}^{L} r^{k} = \begin{cases} \frac{1 - r^{L+1}}{1 - r} & r \neq 1 \\ L + 1 & r = 1 \end{cases}$$

$$y[n] = b_0 \frac{1 - a_1^{n+1}}{1 - a_1}$$
 for $n \ge 0$, if $a_1 \ne 1$

Aug 2016 © 2003-2016, JH McClellan & RW Schafer

PLOT STEP RESPONSE

