The diagram in Figure 1 depicts a cascade connection of two linear time-invariant systems.

Figure 1: Cascade connection of two LTI systems.
(a) Determine the filter coefficients $\left\{b_{k}\right\}$ of the first system: $y_{1}[n]=\sum_{k=0}^{M} b_{k} x[n-k]$

Assume that the impulse response from the first filter is the signal $h_{1}[n]$ shown below:

$$
\begin{aligned}
& \delta[n]=\left\{\begin{array}{ll}
1 & \text { for } n=0 \\
0 & \text { for } n \neq 0
\end{array} \longrightarrow\right.
\end{aligned}
$$

State clearly the value for the order M as well as all the coefficients.
(b) Suppose that system \#2 is described by the system function: $H_{2}(z)=\frac{10}{1-\frac{2}{5} z^{-1}}$

Obtain the impulse response of the cascade, i.e., find $y[n]$ when $x[n]=\delta[n]$ in Figure 1.

