
(a) Suppose that the discrete-time signal $x[n]$ is given by the formula

$$
x[n]=3000 \cos (0.22 \pi n+\pi / 4)
$$

If the sampling rate is $f_{s}=3000$ samples/second, many different continuous-time signals $x(t)=x_{i}(t)$ could have been inputs to the above system. Determine two such inputs with frequency less than 3000 Hz ; i.e., find $x_{1}(t)$ and $x_{2}(t)$ such that $x[n]=x_{1}\left(n T_{s}\right)=x_{2}\left(n T_{s}\right)$ if $T_{s}=1 / 3000$. Give only the frequency and phase for each signal.

$x_{1}(t):$	$f_{1}=$	Hz	$\phi_{1}=$
$x_{2}(t):$	$f_{2}=$	Hz	$\phi_{2}=$
		rads	

(b) If the input $x(t)$ is given by the two-sided spectrum representation shown below,

Determine the spectrum for $x[n]$ when $f_{s}=3000$ samples/sec. Make a plot for your answer, but label the frequency, amplitude and phase of each spectral component.

