A discrete-time system is defined by the following system function:

$$
H(z)=\frac{0.64+z^{-2}}{1-0.64 z^{-2}}
$$

(a) Write down the difference equation that is satisfied by the input $x[n]$ and output $y[n]$ of the system.
(b) Fill in numbers for the vectors bb and aa in the following MATLAB computation of the frequency response of the system:
$\mathrm{b} \cdot \mathrm{b}=[\quad] ; \quad \mathrm{aa}=[\quad]$;
$y y=f i l t e r(b b, a a, x x)$
where xx is the input signal to be filtered.
(c) Determine all the poles and zeros of $H(z)$ and plot them in the z-plane.

(d) Compute $\left|H\left(e^{j \hat{\omega}}\right)\right|^{2}=H\left(e^{j \hat{\omega}}\right) H^{*}\left(e^{j \hat{\omega}}\right)$, the magnitude-squared of the frequency response. Your answer should only contain real quantities.

