PROBLEM:

The two-sided spectrum of a signal $x(t)$ is given in the following table:

frequency (ω)	complex phasor
-150π	X_{-2}
-90π	$3 e^{j \pi / 4}$
0	5
ω_{1}	X_{1}
150π	$1+\sqrt{3} j$

(a) If $x(t)$ is a real signal, what are X_{1}, X_{-2}, and ω_{1} ?
(b) Write an expression for $x(t)$ involving only real numbers and cosine functions.

